Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn trả lời vs thầy là :
" bài này nhìn qua cx biết nó > 0 oy, nên vô nghiệm "
chỉ có những thằng thiểu năng mới hỏi câu kiểu này
a, \(x^2+1\)
Có \(x^2\ge0\forall x\)=>x^2+1 >0
vậy đa thức vô nghiệm
b,(2x+1)^2+3
có (2x+1)^2\(\ge\)0 với mọi x
=>(2x+1)^2+3>0
=>đa thức này không có nghiệm
a)\(f\left(x\right)=\dfrac{1}{3}x^4+3x^2+1\)
\(f\left(x\right)=\dfrac{1}{3}\left(x^4+9x^2+3\right)\)
\(f\left(x\right)=\dfrac{1}{3}\left[x^2\left(x^2+9\right)+3\right]\)
Vì \(x^2\left(x^2+9\right)+3>0\)
\(\Rightarrow f\left(x\right)>0\)
=>f(x) vô nghiệm=>đpcm
*thu gọn đa thức f(x)
f(x)= 4x2+ 5x3- 3x2+ 4x4- x3+ 1- 4x3- 4x4
=4x4- 4x4+ 5x3- x3- 4x3+ 4x2- 3x2 +1
=x2+ 1
Chứng tỏ f(x) không có nghiệm
f(x)= x2+ 1
Ta có: x2\(\ge\)0 ( với mọi x\(\in\)R)
1 > 0
nên x2+ 1 > 0
mà x2 + 1 = 0 ( vô lí)
=> f(x) vô nghiệm
Ta có :
\(f\left(x\right)=4x^2+5x^3-3x^2+4x^4-x^3+1-4x^3-4x^4\)
\(f\left(x\right)=\left(4x^2-3x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-4x^4\right)+1\)
\(f\left(x\right)=x^2+1\)
Lại có :
\(x^2\ge0\)
\(\Rightarrow\)\(f\left(x\right)=x^2+1\ge0+1=1>0\)
Vậy đa thức \(f\left(x\right)\) không có nghiệm ( vì nó luôn lớn hơn 0 )
Chúc bạn học tốt ~
a) Đặt P(y)=0
⇔3y-6=0
⇔3y=6
hay y=2
Vậy: S={2}
Đặt N(x)=0
\(\Leftrightarrow\frac{1}{3}-2x=0\)
\(\Leftrightarrow2x=\frac{1}{3}\)
hay \(x=\frac{1}{3}:2=\frac{1}{3}\cdot\frac{1}{2}=\frac{1}{6}\)
Vậy: \(S=\left\{\frac{1}{6}\right\}\)
Đặt D(z)=0
⇔\(z^3-27=0\)
\(\Leftrightarrow z^3=27\)
hay z=3
Vậy: S={3}
Đặt M(x)=0
⇔\(x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
Vậy: S={2;-2}
Đặt C(y)=0
\(\Leftrightarrow\sqrt{2}y+3=0\)
\(\Leftrightarrow\sqrt{2}y=-3\)
\(\Leftrightarrow y=\frac{-3}{\sqrt{2}}=\frac{-3\sqrt{2}}{2}\)
Vậy: \(S=\left\{\frac{-3\sqrt{2}}{2}\right\}\)
b) Ta có: \(x^4\ge0\forall x\)
\(\Rightarrow x^4+1\ge1>0\forall x\)
hay Q(x) vô nghiệm(đpcm)
a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
__________________________________
P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
_________________________________________
P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
c)Thay x=0 vào đa thức P(x), ta có:
P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)
=0+0-0-0-0
=0
Vậy x=0 là nghiệm của đa thức P(x).
Thay x=0 vào đa thức Q(x), ta có:
Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)
=0+0-0+0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=\(\dfrac{-1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x).
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x5−3x2+7x4−9x3+x2−14xP(x)=x5−3x2+7x4−9x3+x2−14x
=x5+7x4−9x3−2x2−14x=x5+7x4−9x3−2x2−14x
Q(x)=5x4−x5+x2−2x3+3x2−14Q(x)=5x4−x5+x2−2x3+3x2−14
=−x5+5x4−2x3+4x2−14=−x5+5x4−2x3+4x2−14
b) P(x) + Q(x) = (x5+7x4−9x3−2x2−1
\(H\left(x\right)=2^{x^2}+5^{x^3}+3-1-5^{x^3}=2^{x^2}+2>0\forall x\)
=>H(x) ko có nghiệm