![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(H\left(x\right)=2x^2+1\ge1>0\)
Nên đa thức trên vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3
Nghiệm của đa thức là x = 3
b)1. P(1) = \(1^4+2.1^2+1\) = 4
P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)
Ta có: P(x) = \(\left(x^2+1\right)^2\)
Vì \(\left(x^2+1\right)^2\) ≥ 0
Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)
Vậy P(x) không có nghiệm
a) Đặt A(x)=0
\(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=6\)
hay x=3
Vậy: x=3 là nghiệm của đa thức A(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Ta có : P(y)=0
<=> 3y-6=0
<=> 3y=6
<=> y=2
b>
Ta có:
Nhận xét : Với mọi số thực y ta có : y4= (y2)2;≥ 0 ⇒ y4+ 2 ≥ 2 > 0.
Vậy với mọi số thực y thì Q(y) > 0 nên không có giá trị nào của y để Q(y) = 0 hay đa thức vô nghiệm.
a, Để đa thức P(y) co nghiệm => P(y) = 0
=> 3y+6=0
=> 3y=-6
=>y= -2
Vậy đa thức P(y) co nghiệm bằng - 2
b, Vì y^4 luôn lớn hơn hoặc bằng 0
=> y^4 + 2 luôn lớn hơn hoặc bằng 0
=> y^4 luôn lớn hơn 2
=> Đa thức Q(x) không có nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(\Leftrightarrow\left(x+2\right)^2+1\ge1\) nên ko có nghiệm
b,\(\left(x+3\right)^2+1\ge1\) nên ko có nghiệm
Vì để có nghiệm nên biểu thức đó = 0 mà các câu trên đều lớn hơn 1 nên ko có nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
- Để P(y)=0
\(\Leftrightarrow3y-6=0\)
\(\Leftrightarrow3y=6\)
\(\Leftrightarrow y=2\)
Vậy P(y) có nghiệm là 2
- Để M(x)=0
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Rightarrow x\in\){2;-2}
Vậy M(x) có nghiệm là 2 và -2
b)
Ta có:
\(x^4\ge0\)
\(\Rightarrow x^4+1\ge1>0\)
\(\Rightarrow Q\left(x\right)>0\)
\(\Rightarrow Q\left(x\right)\ne0\)
Vậy Q(x) vô nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(H\left(x\right)=2^{x^2}+5^{x^3}+3-1-5^{x^3}=2^{x^2}+2>0\forall x\)
=>H(x) ko có nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: P(x) = 3y + 6 có nghiệm khi:
3y + 6 = 0
3y = –6
y = –2
Vậy đa thức P(y) có nghiệm là y = –2.
b) Ta có: y4 ≥ 0 với mọi y.
Nên y4 + 2 > 0 với mọi y.
Tức là Q(y) ≠ 0 với mọi y.
Vậy Q(y) không có nghiệm. (đpcm)
(Giải thích: y4 có số mũ là số chẵn nên nó luôn có giá trị lớn hơn hoặc bằng 0. Kể cả khi bạn thay y bằng số âm vào. Ví dụ, thay y = -2 chẳng hạn thì y4 = (-2)4 = 16 là số dương.)
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{Ta có :}\) \(P\left(x\right)=2y^4+y^2+10\)
\(P\left(x\right)=\left(2y^2\right)^2+y^2+10\)
\(\text{Vì :}\) \(\left(2y^2\right)^2+y^2\ge0\)
\(\Rightarrow P\ge10>0\)
\(\text{Vậy đa thức vô nghiệm vì không có x thoả mãn P(x) = 0}\)
ủa, nếu P(x) = 2y + y + 10 = 3y + 10 thì phải có nghiệm chứ =))