K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

(ax+by)2 \(\le\) (a2+b2)(x2+y2)

Xét hiệu (a2+b2)(x2+y2) - (ax+by)2

= (ax2+a2y2+b2x2+b2y2) - (a2x2 + b2y2 + 2axby)

= a2x2 + a2y2 + b2x2 + b2y2 - a2x2 - b2y2 - 2axby

= a2y2 + b2x2 - 2axby

= (ay-bc)2 \(\ge\) 0

=> (ax+by)2 \(\le\) (a2+b2)(x2+y2)

24 tháng 6 2016

a) Ta có: \(\left(a+b\right)^2=4ab\)<=> \(a^2+b^2+2ab=4ab\)

                                               <=> \(a^2-2ab+b^2=0\)

                                                <=> \(\left(a-b\right)^2=0\)=> a=b (đpcm)

b) Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

<=> \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

<=> \(a^2y^2+b^2x^2-2axby=0\)

<=>\(\left(ay-bx\right)^2=0\)

<=>ay=bx(đpcm)

8 tháng 4 2019

Theo bất đẳng thức tam giác:

\(\hept{\begin{cases}a< b+c\\b< a+c\\c< a+b\end{cases}}\Rightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{cases}}\)

Cộng các bất đẳng thức lại với nhau có điều cần CM

21 tháng 7 2019

Ta có:

VT = (x2 + y2)(a2 + b2)

= x2a2 + x2b2 + y2a2 + y2b2

= (a2x2 + b2y2 + 2axby) + (a2y2 - 2aybx + b2x2)

= (ax + by)2 + (ay - bx)2

=> VT = VP => đpcm