Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(2x+3y⋮17\Rightarrow4.\left(2x+3y\right)⋮17\)\(=\left(8x+12y\right)\)
Vì \(\left(8x+12y\right)⋮17\)và \(9x+5y⋮17\)\(\Rightarrow\left(8x+12y\right)+\left(9x+5y\right)⋮17\)\(\Rightarrow17x+17y⋮17\)
\(\Rightarrow17\left(x+y\right)⋮17\)vì do \(17⋮17\)nên\(17\left(x+y\right)⋮17\)
=> Nếu \(2x+3y⋮17\)thì \(9x+5y⋮17\)
k mình nhé.
CHÚC BẠN HỌC GIỎI.
TH1:2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17
Ta có:4(2x+3y)+(9x+5y)
=8x+12y+9x+5y
=17x+17y chia hết cho 17
Mà 4(2x+3y) chia hết cho 17 nên 9x+5y chia hết cho 17
TH2:9x+5y chia hết cho 7 thì 2x+3y chia hết cho 17
Ta có:(9x+5y)+4(2x+3y)
=9x+5y+8x+12y
=17x+17y chia hết cho 17
Mà 9x+5y chia hết cho 17 nên 4(2x+3y) chia hết cho 17
Vì 4 không chia hết cho 17 nên 2x+3y chia hết cho 17
Vậy 2x+3y chia hết cho 17<=>9x+5y chia hết cho 17(đpcm)
Vì abcabc = 1001 x abc
Mà 1001 lại chia hết cho 11
=> abcabc chia hết cho 11
Hội con 🐄 chúc bạn học tốt!!!
a+10b chia hết cho 17
=>2a+20b chia hết cho 17(17 và 2 nguyên tố cùng nhau mới có trường hợp này)
cố định đề bài 2a+3b chia hết cho 17
nếu hiệu 2a+20b-(2a+3b) chia hết cho 17 thì 100% 2a+20b chia hết cho 17 cũng như a+10b chia hết cho 17
hiệu là 17b,có 17 chia hết cho 17=>17b chia hết 17
vậy a+10b chia hết cho 17 nếu cái vế kia xảy ra
ngược lai bạn cũng chứng minh tương tự nhá,ko khác đâu
chúc học tốt
Ta có : ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11(a + b) chia hết cho 11
Ta có: câu 1 : ab + ba = 10a + b +10b +a
=11a +11b =11(a+b)
=> ab + ba chia hết cho 11
câu 2 : ab - ba = 10a +b -10b -a
=9a - 9b =9(a-b) với điều kiện a >b
=> ab - ba chia hết cho 9
\(ab+ba\)
\(=10a+b+10b+a\)
\(=11a+11b\)
\(=11\left(a+b\right)⋮11\)
ab + ba
= a*10 + b*1 + b*10 + a*1
= a* ( 10+1) + b* ( 1+10)
=a*11 + b*11
vì
a*11 chia hết cho 11
b*11 cũng chia hết cho 11
=> ab + ba sẽ chia hết cho 11