Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+3+3^2+3^3)+...+(3^2012+3^2013+3^2014+3^2015)
A=(1+3+3^2+3^3)+...+3^2012+(1+3+3^2+3^3)
A=(1+3+3^2+3^3).(1+...+3^2012)
A=40.(1+...+3^2012) luôn chia hết cho 40
ĐPCM
Vì 9999932015 =(....7)
5555572015 =(....7)
=>B co tận cùng là 0
Ta có: \(B=999993^{2015}+555557^{2015}\)
\(B=999993^{4\times503+3}+555557^{4\times503+3}\)
\(B=\left(999993^4\right)^{503}\times999993^3+\left(555557^4\right)^{503}\times555557^3\)
\(B=\left(.....1\right)^{503}\times.....7-\left(.....1\right)^{503}\times.......7\)
\(B=.....1\times....7-.....1\times.....7\)
\(B=......7-.......7\)
\(B=.....0\)
Do đó, B chia hết cho 5
( Bạn gạch ngang trên đầu các số dạng ...x nhé, vì mình không biết cách, bạn thông cảm cho mình nha)
gọi a = 111111.a
vì 111111chia hết cho 7 nên 111111.a sẽ chia hết cho 7
Vậy aaaaaa chia hết cho 7
ta có:\(\text{aa}aaaa=111111\cdot a\)
\(m\text{à}:111111⋮7\)
\(\Rightarrow111111\cdot a⋮7\)
\(\Rightarrow\text{aa}aaaa⋮7\)
c,\(10^{2010}+8\)
\(=100...0+8\)
\(=100...8\)(tổng các chữ số =9)
\(\Rightarrow10^{2010}+8⋮9\)
1a.
Số nhỏ nhất: 5, số lớn nhất 1000
Vậy có: (1000 - 5): 5 + 1 = 200 (số)
Ta có: aaa2015=(111a)2015
=(37.3a)2015
=372015.32015.a2015
Mà 32015 chia hết cho 3 => 372015.32015.a2015 chia hết cho 3
Vậy aaa2015 chia hết cho 3(đpcm)