Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{2016}{2.3:2}+\frac{2016}{3.4:2}+...+\frac{2016}{2015.2016:2}\)
\(S=\frac{4032}{2.3}+\frac{4032}{3.4}+...+\frac{4032}{2015.2016}\)
\(S=4032\left[\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right]\)
\(S=4032\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right]\)
\(S=4032\left[\frac{1}{2}-\frac{1}{2016}\right]=4032\cdot\frac{1007}{2016}\)
\(S=2014\)
S = \(2016+\frac{2016}{1+2}+\frac{2016}{1+2+3+}+...+\frac{2016}{1+2+3+...+2015}\)
S = \(2016+\left(\frac{2016}{1+2}+\frac{2016}{1+2+3}+...+\frac{2016}{1+2+3+...+2015}\right)\)
S = \(2016+2016.\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\right)\)
đặt A = \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\)
A = \(\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2015\right).2015:2}\)
A = \(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2015.2016}\)
A = \(2.\left(\frac{1}{2}-\frac{1}{3}\right)+2.\left(\frac{1}{3}-\frac{1}{4}\right)+...+2.\left(\frac{1}{2015}-\frac{1}{2016}\right)\)
A = \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
A = \(2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
A = \(2.\frac{1007}{2016}=\frac{1007}{1008}\)
Thay A vào ta được :
S = \(2016+2016.\frac{1007}{1008}\)
S = \(2016.\left(1+\frac{1007}{1008}\right)\)
S = \(2016.\frac{2015}{1008}\)
S = \(4030\)
Bài 5 :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{59}\)
\(A=1-\frac{1}{50}\)
từ trên ta có : \(1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)
Bài 1 mk ko hiểu đề cho lắm
Bài 2 :
Đặt \(A=\frac{x+4}{x-2}+\frac{2x-5}{x-2}\)
Ta có :
\(\frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}=\frac{3x-6+5}{x-2}=\frac{3\left(x-2\right)}{x-2}+\frac{5}{x-2}=3+\frac{5}{x-2}\)
Để \(A\) là số nguyên thì \(\frac{5}{x-2}\) phải là số nguyên \(\Rightarrow\) \(5⋮\left(x-2\right)\) \(\Rightarrow\) \(\left(x-2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Do đó :
\(x-2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(3\) | \(1\) | \(7\) | \(-3\) |
Vậy \(x\in\left\{-3;1;3;7\right\}\) thì A là số nguyên
Chúc bạn học tốt ~
\(n^2>\left(n-1\right)\left(n+1\right)\Rightarrow\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right).\)
Do đó: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2012.2014}+\frac{1}{2013.2015}=\)
\(=\frac{1}{2}[1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2015}]=\)
\(=\frac{1}{2}[1+\frac{1}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{1}{2}[\frac{3}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{3}{4}-\frac{1}{2}\left(\frac{1}{2014}+\frac{1}{2015}\right)< \frac{3}{4}.\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
........
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)
Đpcm
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\), \(\frac{1}{3^2}< \frac{1}{2.3},\frac{1}{4^2}< \frac{1}{3.4}\) ,.................., \(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1+1-\frac{1}{100}\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{199}{100}< 2\)
Vậy A<2
Mik chỉ biết vậy thôi không biết có đúng không nhưng nhớ k mik nha
Chứng minh rằng:
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\)\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}=1-\frac{1}{2013}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< 1\)
Đặt: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
.....
\(\frac{1}{2013^2}< \frac{1}{2012.2013}\)
Nên \(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(=1-\frac{1}{2013}< 1\)
Vậy \(A< 1\left(ĐPCM\right)\)
lon hon 1 nha ban
sửa lại đề : Chứng tỏ rằng : A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}< 1\)
bài làm
A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}\)
A = \(\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2014-1}{2014!}\)
A = \(1-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2014}{2014!}-\frac{1}{2014!}\)
A = \(1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2013!}-\frac{1}{2014!}\)
A = \(1-\frac{1}{2014!}< 1\)