\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\) chia hết cho 4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2015

\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(=3^1.\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=3^1.4+3^3.4+3^5.4+...+3^{99}.4\)

\(=4.\left(3^1+3^3+3^5+...+3^{99}\right)\)

Vậy phép tính trên chia hết cho 4

22 tháng 10 2017

đặt A = 3 + 32 + 33 + 34 + ... + 399 + 3100

A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )

A = 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )

A = 3 . 4 + 33 . 4 + ... + 399 . 4

A = 4 . ( 3 + 33 + ... + 399 ) \(⋮\)4

Đặt A = 31 + 32 + 33 + 34 + ... + 3100

= ( 31 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )

=3( 1+3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )

= 4( 3+ 33 + ... + 399 ) chia hết cho 4

=> đpcm

27 tháng 10 2019

Gọi tổng 3+32+33+...+3100 là A

Ta có :A=3+32+33+...+3100

             =(3+32)+(33+34)+...+(399+3100)

             =3(1+3)+33.(1+3)+...+399.(1+3)

            =3.4+33.4+...+399.4

Vì 4\(⋮\)4 nên 3.4+33.4+...+399.4\(⋮\)4

hay A \(⋮\)4

Vậy A\(⋮\)4

3 tháng 10 2016

\(3\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)

=\(40\left(1+...+3^{97}\right)\) chia hết cho 40 

4 tháng 10 2016

\(3+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=3.\left(3+3^2+3^3+3^4\right)+...+3^{97}.\left(3+3^2+3^3+3^4\right)\)

\(=3.120+...+3^{97}.120\)

\(=120.\left(3+...+3^{97}\right)\)chia hết cho 40 (đpcm)

21 tháng 10 2017

Giải:

\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=3.4+3^3.4+...+3^{99}.4\)

\(=4\left(3+3^3+...+3^{99}\right)⋮4\)

Vậy ...

Chúc bạn học tốt!

6 tháng 3 2020

1. A = 75(42004 + 42003 +...+ 4+ 4 + 1) + 25

    A = 25 . [3 . (42004 + 42003 +...+ 4+ 4 + 1) + 1]

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 3 + 1)

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 4)

    A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)

    A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100

6 tháng 3 2020

3a) |x| = 1/2 

=> x = 1/2 hoặc x = -1/2

với x = 1/2:

A = \(3.\left(\frac{1}{2}\right)^2-2.\frac{1}{2}+1\)

\(A=\frac{3}{4}-1+1=\frac{3}{4}\)

với x = -1/2

A = \(3.\left(-\frac{1}{2}\right)^2-2\left(-\frac{1}{2}\right)+1\)

\(A=\frac{3}{4}+1+1=\frac{3}{4}+2=\frac{11}{4}\)

Phần C đề thiếu

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D=3-\frac{203}{3^{100}}\)

\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)

27 tháng 9 2020

sửa rồi nhá bn

12 tháng 11 2018

Ta có :

\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=(3^1+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})\)

\(=3(1+3)+3^3(1+3)+...+3^{99}(1+3)\)

\(=3.4+3^3.4+...+3^{99}.4\)

\(=4.(3+3^3+...+3^{99})\)chia hết cho 4 

12 tháng 11 2018

\(3+3^2+3^3+3^4+...+3^{99}+3^{100}.\)

\(=3\left(1+3\right)+3^2\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=4\left(3+3^2+...+3^{99}\right)⋮4\)