\(3^1+3^2+3^3+3^4+.....+3^{99}+3^{100}\) chia hết cho 4

Giúp mk...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

Giải:

\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=3.4+3^3.4+...+3^{99}.4\)

\(=4\left(3+3^3+...+3^{99}\right)⋮4\)

Vậy ...

Chúc bạn học tốt!

22 tháng 10 2017

đặt A = 3 + 32 + 33 + 34 + ... + 399 + 3100

A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )

A = 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )

A = 3 . 4 + 33 . 4 + ... + 399 . 4

A = 4 . ( 3 + 33 + ... + 399 ) \(⋮\)4

Đặt A = 31 + 32 + 33 + 34 + ... + 3100

= ( 31 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )

=3( 1+3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )

= 4( 3+ 33 + ... + 399 ) chia hết cho 4

=> đpcm

27 tháng 10 2019

Gọi tổng 3+32+33+...+3100 là A

Ta có :A=3+32+33+...+3100

             =(3+32)+(33+34)+...+(399+3100)

             =3(1+3)+33.(1+3)+...+399.(1+3)

            =3.4+33.4+...+399.4

Vì 4\(⋮\)4 nên 3.4+33.4+...+399.4\(⋮\)4

hay A \(⋮\)4

Vậy A\(⋮\)4

3 tháng 10 2016

\(3\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)

=\(40\left(1+...+3^{97}\right)\) chia hết cho 40 

4 tháng 10 2016

\(3+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=3.\left(3+3^2+3^3+3^4\right)+...+3^{97}.\left(3+3^2+3^3+3^4\right)\)

\(=3.120+...+3^{97}.120\)

\(=120.\left(3+...+3^{97}\right)\)chia hết cho 40 (đpcm)

23 tháng 10 2015

\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(=3^1.\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=3^1.4+3^3.4+3^5.4+...+3^{99}.4\)

\(=4.\left(3^1+3^3+3^5+...+3^{99}\right)\)

Vậy phép tính trên chia hết cho 4

22 tháng 7 2018

\(a.\)

\(8^7-2^{18}\)

\(=\left(2^3\right)^7-2^{18}\)

\(=2^{21}-2^{18}\)

\(=2^{18}.2^3-2^{18}\)

\(=2^{18}\left(2^3-1\right)\)

\(=2^{18}.7\)

\(=2^{17}.7.2⋮14\)

Vậy \(8^7-2^{18}⋮14\)

\(b.\)

\(5^5-5^4+5^3\)

\(=5^3\left(5^2-5+1\right)\)

\(=5^3.21\)

\(=5^3.7.3⋮7\)

Vậy \(5^5-5^4+5^3⋮7\)

\(c.\)

\(7^6+7^5-7^4\)

\(=7^4\left(7^2+7-1\right)\)

\(=7^4.55\)

\(=7^4.5.11⋮11\)

Vậy \(7^6+7^5-7^4⋮11\)

22 tháng 7 2018

mk chỉ bt làm phần b với c thui xin lỗi bn nha

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

Bài 2:

\(A=\frac{8^5(-5)^8+(-2)^5.10^9}{2^{16}.5^7+20^8}\) \(=\frac{(2^3)^5(-5)^8+(-2)^5.2^9.5^9}{2^{16}.5^7+(2^2.5)^8}\)

\(=\frac{2^{15}.5^8-2^5.2^9.5^9}{2^{16}.5^7+2^{16}.5^8}\)

\(=\frac{2^{14}.5^8(2-5)}{2^{16}.5^7(1+5)}\)

\(=\frac{5(-3)}{2^2.6}=\frac{-5}{8}\)

Bài 3:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)

Thay vào:

\(\frac{5a+3b}{5a-3b}=\frac{5bt+3b}{5bt-3b}=\frac{b(5t+3)}{b(5t-3)}=\frac{5t+3}{5t-3}\)

\(\frac{5c+3d}{5c-3d}=\frac{5dt+3d}{5dt-3d}=\frac{d(5t+3)}{d(5t-3)}=\frac{5t+3}{5t-3}\)

Do đó: \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

Bài 4:

Ta có:

\(A=3+3^2+3^3+3^4+...+3^{100}\)

\(=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+...+3^{97}(1+3+3^2+3^3)\)

\(=3.40+3^5.40+....+3^{97}.40\)

\(=120(1+3^4+....+3^{96})\vdots 120\)

Ta có đpcm.

12 tháng 6 2017

câu 1 thiếu đề

câu 2: \(\left(\frac{1}{3}\right)^{2n-1}=3^5\Leftrightarrow\frac{1}{3^{2n-1}}=3^5\Leftrightarrow1=3^5.3^{2n-1}\Leftrightarrow3^{2n+4}=1\)<=>2n+4=0

<=>2n=-4<=>n=-2

13 tháng 12 2015

Em mới học lớp 5 thôi ạ!