Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
\(C=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{199}{200}\)
\(C^2=\left(\frac{1}{2}\right)^2\times\left(\frac{3}{4}\right)^2\times\left(\frac{5}{6}\right)^2\times...\times\left(\frac{199}{200}\right)^2\)
\(< \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times\frac{5}{6}\times\frac{6}{7}\times...\times\frac{199}{200}\times\frac{200}{201}\)
\(=\frac{1}{201}< \frac{1}{196}\)
\(\Rightarrow C< \sqrt{\frac{1}{196}}=\frac{1}{14}\)
\(\frac{1}{100}+\frac{1}{101}+..+\frac{1}{200}< \frac{1}{100}+\frac{1}{101}+\frac{1}{101}+..+\frac{1}{101}\) (100 số 1/101)
\(< \frac{1}{100}+\frac{1}{101}.100=\frac{1}{100}+\frac{100}{101}\)
vì \(\frac{1}{100}+\frac{100}{101}< \frac{1}{100}+\frac{99}{100}=1\)
mà \(\frac{1}{100}+\frac{1}{101}+..+\frac{1}{200}< \frac{1}{100}+\frac{100}{101}\)
\(\Rightarrow\frac{1}{100}+\frac{1}{101}+..+\frac{1}{200}< 1\)(ĐPCM)
\(A< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)
=> \(A< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)
Lại có:
\(A>\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)
=> \(A>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)
=> 1/100 < A < 1/99
Ta có : \(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(...>\frac{1}{200}\)
Mà \(\frac{1}{200}=\frac{1}{200}\)
Suy ra : \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)
Mời nhân tài giải nốt.