Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
54n + 375
= (54)n +375
= 725n + 375
= (.....725) + 375
= ......1000
Vì 54n + 375 có 4 chữ số tận cùng là 1000 mà 1000 \(⋮\)1000
\(\Rightarrow\)54n + 375 \(⋮\)1000
TQuynh ơi !!! đề bài là : \(5^{4^n}\) nhé !! Lũy thừa tầng nha !!
Chứ ko pk là 54n
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-1\right)\left(n-2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)
c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)
n3 + 3n2 + 2n
= n3 + n2 + 2n2 + 2n
= n2( n + 1 ) + 2n ( n + 1 )
= ( n + 1 )( n2 + 2n )
= n ( n + 1 ) ( n + 2 )
VÌ 6 = 2.3
n ( n + 1 ) ( n + 2 ) \(⋮\)2 ,3
=> n ( n + 1 ) ( n + 2 ) \(⋮\)6 ( ĐPCM )
hok tốt
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n^2+2n+n+2\right)\)
\(=n\left[n\left(n+2\right)+\left(n+2\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Vì \(n,n+1,n+2\)là 3 số thực liên tiếp \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)
\(n,n+1\)là 2 số thực liên tiếp \(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮2\)
mà \(\left(2;3\right)=1\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)
hay \(n^3+3n^2+2n⋮6\)
Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)
=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0
=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)
=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca
=> a2 + b2 + c2 \(\le\)2(ab + bc + ca)
Dấu "=" xảy ra <=> a + b + c = 0
Xí bài 2 ý a) trước :>
4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0
<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0
<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0
Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Thế vào T ta được :
\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)
\(T=0+1+1=2\)
Với n = 0 => A = 03 - 2.02 + 2.0 - 4 = -4 ko là số nguyên tố
n = 1 => A = 13 - 2.12 + 2.1 - 4 = 1 - 2 + 2 - 4 = -3 ko là số nguyên tố
n = 2 => A = 23 - 2.22 + 2.2 - 4 = 0 ko là số nguyên tố
n = 3 => A = 33 - 2.32 + 2.3 - 4 = 11 là số nguyên tố
Với n \(\ge\)4 => A = n3 - 2n2 + 2n - 4 = n2(n - 2) + 2(n - 2) = (n2 + 2)(n - 2) có nhiều hơn 2 ước
=> A là hợp số
Vậy Với n = 3 thì A là số nguyên tố
=2001^n+8^n.47^n+625^n
=(...001) + (8.47)^n+(...625)
=(...001)+(...376)+(...625)
=(...002)
\(C=2001^n+2^{3n}.47^n+25^{2n}\)
\(=2001^n+376^n+625^n\)
2001 đồng dư với 001 ( mod100 )
=> 2001n đồng dư với 001 ( mod100 )
376 đồng dư với 076 ( mod100 )
=> 376n đồng dư với 076 ( mod100 )
625 đồng dư với 025 ( mod100 )
=> 625n đồng dư với 025 ( mod100 )
=> 2001n + 376n + 625n đồng dư với 001 + 076 + 025 ( mod200 )
=> ........002 ( mod100 )
=> đpcm