K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

#)Giải :

Ta có : 1090 = 1000...0 (90 số 0) + 2 = 1000...2 chia hết cho 2 (1)

Lại có : 1 + 2 = 3 chia hết cho 3 (2) 

=> 1090 + 2 chia hết cho 2 và 3

tổng của 10 mũ 90  là 1 mà 1+2=3 chia hết cho 3

10 mũ 90 số tự nhiên sẽ có chữ số tận cùng +2 chia hết cho 2

23 tháng 10 2017

n^2 + n + 1 = n( n + 1 ) + 1

n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ . 

Mà số lẻ thì không chia hết cho 2 . 

=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2 

=> n( n + 11 ) + 1 cũng không chia hết cho 4 

Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6 

=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7 

Vậy n( n + 1 ) + 1 không chia hết cho 5 

2 tháng 12 2017

n^2 + n + 1 = n( n + 1 ) + 1

n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ . 

Mà số lẻ thì không chia hết cho 2 . 

=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2 

=> n( n + 11 ) + 1 cũng không chia hết cho 4 

Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6 

=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7 

Vậy n( n + 1 ) + 1 không chia hết cho 5 

15 tháng 10 2015

b;

bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.

.......................................................................3......n=3k và 3k + 1 và 3k+2

c;

bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9

d;tương tự b

e;g;tương tự a

7 tháng 10 2024

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

14 tháng 10 2017

A=(2+22)+(23+24)+...+(289+290)

A=(2x1+2x2)+(23x1+23x2)+...+(289+290)

A=2x(1+2)+23x(1+2)+...+289x(1+2)

A=3x(2+23+...+289) chia hết cho 3

A=(2+22+23)+(24+25+26)+...+(288+289+290)

A=(2x1+2x2+2x22)+(24x1+24x2+24x22)+...+(288x1+288x2+288x22)

A=2x(1+2+22)+24x(1+2+22)+...+288x(1+2+22)

A=7x(2+24+288) chia hết cho 7

Mà (3;7)=1  =>A chia hết cho 21

6 tháng 12 2017

A=(2+22)+(23+24)+...+(289+290)

=2(1+2)+23(1+2)+...+289(1+2)

=2.3+23.3+...+289.3

Nên A chia hết cho 3

A=(2+22+23)+(24+25+26)+...+(288+289+290)

=2(1+2+22)+24(1+2+22)+...+288(1+2+22)

=2.7+24.7+...+288.7

Nên A chia hết cho 7 . Vậy A chia hết cho 21

9 tháng 8 2016

Đáng nhẽ đê như vầy: 

 A= 2 + 22 + 23 + 2+ ..... + 22015

 => A = (2 + 23) + ( 22 + 24 ) + ..... + ( 22012 + 22014​) + (22013 + 22015)

 <=> A = 2.( 1 + 4 ) + 22. ( 1 + 4) + ...... + 22012.(1 + 4) + 22013.(1 + 4)

=> A = 2.5 + 22. 5 + ...... + 22012.5 + 22013.5

=> A = 5. ( 2 + 22 + 23 + .... + 22013) chai hết cho 5

9 tháng 8 2016

còn 2 và 3 nũa mà

23 tháng 10 2017
 

Chứng tỏ:2+23+24+.......+210 chia hết cho 3 và 31.

với

 

 
Câu hỏi tương tự Đọc thêm Báo cáo
 
 
avt1534042_60by60.jpg
 
2 tháng 11 2017

tự mà làm

24 tháng 2 2020

Câu c :

Bạn tham khảo tại đây nhé 

https://olm.vn/hoi-dap/detail/27025648125.html?pos=97844380070

24 tháng 2 2020

a. 105+98 chia hết cho cả 2 và 9

=) 100000+98 = 100098 \(⋮\)2

xét : 100098 =) 1+0+9+8 =) 18 \(⋮\)9

( ĐPCM )

5 tháng 1 2017

minh chi lam dc cau a thoi nha nhung hay t i c k cho minh

3 + 32 = 12 chia het cho 4  3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 3] + ....+38 . [ 3 + 32 ]

=30 . 12 + 3 . 12 +.....+ 38 . 12 = 12.[3+ 32 +....+ 38 ] 

vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4

10 tháng 12 2017

hghjhgjhgjh