Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số có tận cùng là 4,9 khi nâng lên lũy thừa bậc lẻ có số mũ không đổi => 9^11 tận cùng là 9
Số có tận cùng là 0 chia hết cho 10
Ta có: 9^11 + 1 = ( ....9) + 1 = ( .... 0) chia hết cho 10
=> 9^11 + 1 chia hết cho 10 (đpcm)
Ta có:
\(9^{11}=9.9.9...9.9=81.81...81.9=\left(...9\right)\)
Dựa vào dấu hiệu chia hết cho 10 => 911+1 chia hết cho 10
câu a là 1 hàng đẳng thức bạn nhé
Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
b) p^2-1=(p-1)(p+1)
Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2
+ Nếu p:3 dư 1 thì p-1 chia hết cho 3
+ Nếu p:3 dư 2 thì p+1 chia hết cho 3
=> p^2-1 chia hết cho 3.
Do p>3, p NT=> p lẻ=> p=2k+1
Thay vào đc p^2-1=2k(2k+2)
=4k(k+1)
Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2
=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8
Tóm lại p^2-1 chia hết cho 24 do (3,8)=1
2) p^4-1=(p^2-1)(p^2+1)
Theo câu a thì p^2-1 chia hết cho 24
Do p lẻ (p là SNT >3)
=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ
=> p^2+1 chia hết cho 2
=> p^4-1 chia hết cho 48 (đpcm).
\(S=1+\left(2-3+5+6-.....-998+999\right)+1000\)
\(S=1001+S1\)
VOI \(S1=O\)
VAY \(S\)CHIA HET 11
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
Ta có : A = 2 + 22 + 23 + 24 + .. + 259 + 260
= (2 + 22) + (23 + 24) + .. + (259 + 260)
= 2(2 + 1) + 23(2 + 1) + ... + 259(2 + 1)
= (2 + 1)(2 + 23 + ... + 259) = 3(2 + 23 + ... + 259) \(⋮\)3
Đặt n2+3n+5 = (*)
Giả sử n=1 => (*) <=> 12+3.1+5 không chia hết cho 121 ( đúng )
Vậy với n=1 đúng
Giả sử (*) đúng với n=k
=> (*) <=> k2+3k+5
Ta cần c/m (*) đúng với n = k+1
Thật vậy với n= k+1
=> (*) <=> (k+1)2+3(k+1)+5
tự viết tiếp
1033+8 chia hết cho 18
105.1028+8
105.104.7+8
...0....0 7+8
...0....0+....8
...8 chia hết cho 18