\(a^3+b^3+c^3\)= 3abc thì a=b=c

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c
                             =(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0
Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c
Vậy a=b=c

8 tháng 11 2018

\(a^2+b^2=2ab\)

<=>  \(a^2+b^2-2ab=0\)

<=>  \(\left(a-b\right)^2=0\)

<=>   \(a-b=0\)

<=>  \(a=b\)  (đpcm)

8 tháng 11 2018

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=>  \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

<=>   \(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

<=>  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

Xét:  \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>  \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>  \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>  \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

<=>  \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

<=>  \(a=b=c\)

=>  đpcm

1 tháng 1 2020

Chứng minh : a3 + b3 + c3 = 3abc \(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(tm\right)\\a=b=c\left(loai\right)\end{cases}}\)

Rút gọn P

\(P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-a\right)}{abc}\)

Xét : ab(a-b) + bc(b-c) + ac(c-a) = ab[-(b-c)-(c-a)] + bc(b-c) + ac(c-a)

= (b-c)(bc-ab) + (c-a)(ac-ab) = b(b-c)(c-a) + a(c-a)(c-b) = (c-a)(c-b)(a-b)

\(\Rightarrow P=\frac{\left(c-a\right)\left(c-b\right)\left(a-b\right)}{abc}\)

Rút gọn Q

Đặt a - b = z ; b-c = x ; c - a = y

\(\Rightarrow\)x- y = a + b - 2c = -c - 2c = -3c              ( do a + b + c = 0 )

y - z = -3a ; z - x = -3b

\(\Rightarrow\)\(-3Q=\frac{\left(y-z\right)}{x}+\frac{\left(z-x\right)}{y}+\frac{\left(x-y\right)}{z}\)

Làm tương tự như rút gọn P, ta có : 

\(-3Q=\frac{\left(x-y\right)\left(z-y\right)\left(z-x\right)}{xyz}=\frac{-\left(-3a\right)\left(-3b\right)\left(-3c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{27abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-27abc}{\left(a-b\right)\left(c-b\right)\left(c-a\right)}\)

\(\Rightarrow Q=\frac{9abc}{\left(a-b\right)\left(c-b\right)\left(c-a\right)}\)

\(\Rightarrow PQ=9\)

7 tháng 10 2016

Ta có a3 + b3 +c3 -3abc = (a+b)-3ab(a+b) - 3abc + c3 
                                    = (a+b+c)[(a+b)2 -c(a+b) +c2 ] -3ab(a+b+c)

                                    = 1/2 (a+b+c)(2a2 +2b2 +2c2 -2ab-2bc-2ac)

                                    = 1/2 (a+b+c) [(a-b)2 +(b-c)2 + (c-a)2 ] 

                                    =0 ( vì bài dài nên mk nhắc giải thích bạn tự hiểu nhé)

=> a+b+c=0 hoặc a=b=c

Th1: a+b+c=0 => b-c=-a; c-a=-b; a-b=-c

=> P= 1

Th2 : a=b=c Loại (vì mẫu ko thể bằng không)

Vậy P=1

bài làm còn sơ sài mong bạn thông cảm

  

7 tháng 10 2016

Online Math sai rồi nhé.

a + b + c = 0 thì b + c mới là - a

ĐÚng là b - c = -a - 2c

Tương tự với c - a, a - b

Em tính ra , băn khoăn mỗi chỗ đó nên mới không làm được bài toán này. 

23 tháng 6 2017

\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

...... bạn làm 2 TH rồi thế vào P nhé, chỗ phân tích ko hiểu thì cứ hỏi lại mình

8 tháng 11 2018

Ta có \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ac+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2ac-2bc=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\left(tm\right)\\a=b=c\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow a+b+c=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\)

Ta có \(P=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\Leftrightarrow abc.P=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)=ab\left(a-b\right)-bc\left(a-b+c-a\right)+ca\left(c-a\right)=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)=b\left(a-b\right)\left(a-c\right)-c\left(b-a\right)\left(c-a\right)=\left(a-b\right)\left(a-c\right)\left(b-c\right)\Leftrightarrow P=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc}\)\(Q=\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right).Q=c\left(b-c\right)\left(c-a\right)+a\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(b-c\right)\left(c-a\right)-\left(c+b\right)\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(b-c\right)\left(c-a\right)-c\left(a-b\right)\left(c-a\right)-b\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(c-a\right)\left(2b-c-a\right)-b\left(a-b\right)\left(2c-a-b\right)=c\left(c-a\right)3b-b\left(a-b\right)3c=3bc\left(b+c-2a\right)=-9abc\Leftrightarrow Q=\dfrac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{9abc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)Vậy \(P.Q=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc}.\dfrac{9abc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=9\)

7 tháng 7 2017

Ta có  \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\)  \(a+b+c=0\)  hoặc  \(a^2+b^2+c^2-ab-bc-ca=0\)

Giả sử  \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)  a = b hoặc b = c hoặc c = a

Mà a, b, c đôi một khác nhau (vô lí) => a + b + c = 0

Do đó  \(\hept{\begin{cases}-c=a+b\\-b=a+c\\-a=b+c\end{cases}}\)  \(\Leftrightarrow\)   \(\hept{\begin{cases}c^2=a^2+2ab+b^2\\b^2=a^2+2ac+c^2\\a^2=b^2+2bc+c^2\end{cases}}\)

Hay  \(P=\frac{ab^2}{a^2+b^2-a^2-2ab-b^2}+\frac{bc^2}{b^2+c^2-b^2-2bc-c^2}+\frac{ca^2}{c^2+a^2-c^2-2ca-a^2}\)

\(=\frac{ab^2}{-2ab}+\frac{bc^2}{-2bc}+\frac{ca^2}{-2ca}=\frac{-1}{2}\left(a+b+c\right)=0\)