Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có B = 12 + 22 + 32 + ... + 982
= 1.1 + 2.2 + 3.3 + ... + 98.98
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + 98.(99 - 1)
= 1.2 + 2.3 + 3.4 + ... + 98.99 - (1 + 2 + 3 + ... + 98)
= 1.2 + 2.3 + 3.4 + ... + 98.99 - 98.(98 + 1) : 2
= 1.2 + 2.3 + 3.4 + ... + 98.99 - 4851
Khi đó B - A = (1.2 + 2.3 + 3.4 + ... + 98.99 - 4851) - 1.2 + 2.3 + 3.4 + ... + 98.99
= 1.2 + 2.3 + 3.4 + ... + 98.99 - 4851 - 1.2 + 2.3 + 3.4 + ... + 98.99
= -4851
Vậy B - A = - 4851
iải thích các bước giải:
A=(2+2²)+(2³+2^4)+...........+ (2^59 + 2^60)
= 2(1+2+ 2²)+2^4(1+2+2²)+.................. + 2^58.( 1+2+ 2²)
=2.7+2^4 . 7 +..............+ 2^58 . 7
=7 (2+2^4 +................. +2^58) ⋮ 7
DO A là bội của 7
Mà 7 chia hết cho 7
=> A chia hết cho 7
đúng 100%
chỉ thiếu mỗi cm chia hết 15 thôi thông cảm
\(B=3+3^2+3^3+...+3^{360}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{359}+3^{360}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{359}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{359}\right)⋮4\)
\(B=3+3^2+3^3+...+3^{360}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{358}+3^{359}+3^{360}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{358}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{358}\right)⋮13\)
8n + 193 chia hết 4n + 3
=> 8n + 6 + 187 chia hết 4n + 3
=> 2( 4n + 3 ) + 187 chia hết 4n + 3
=> 187 chia hết cho 4n+ 3
=> 4n thuộc Ư( 187 ) và n thuộc N
Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }
4n + 3 = 1 ( loại )
4n + 3 = 11 => n=2
4n + 3 = 17 ( loại )
4n + 3 = 187 => n = 46
vậy n= 2 hoặc 46
8n + 193 chia hết 4n + 3
=> 8n + 6 + 187 chia hết 4n + 3
=> 2( 4n + 3 ) + 187 chia hết 4n + 3
=> 187 chia hết cho 4n+ 3
=> 4n thuộc Ư( 187 ) và n thuộc N
Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }
4n + 3 = 1 ( loại )
4n + 3 = 11 => n=2
4n + 3 = 17 ( loại )
4n + 3 = 187 => n = 46
vậy n= 2 hoặc 46
Ta có \(\left(n^2+7n+9\right)⋮\left(n+3\right)\)
\(\Leftrightarrow\left[\left(n^2+3n\right)+\left(4n+12\right)-3\right]⋮\left(n+3\right)\)
\(\Leftrightarrow\left[n\left(n+3\right)+4\left(n+3\right)-3\right]⋮\left(n+3\right)\)
\(\Rightarrow-3⋮\left(n+3\right)\)Hay \(n+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)
n + 3 | - 3 | - 1 | 1 | 3 |
n | - 6 | - 4 | - 2 | 0 |
Vậy \(n\in\left\{-6;-4;-2;0\right\}\)
Ta có: \(\frac{n^2+7n+9}{n+3}=\frac{n^2+3n+3n+9}{n+3}+\frac{n}{n+3}\)
= \(\frac{\left(n+3\right)^2}{n+3}+\frac{n+3-3}{n+3}=n+3+1-\frac{3}{n+3}\)=> x + 4 - 3/n+3
Do n thuộc N => n+ 4 thuộc N; Để \(n^2+7n+9⋮n+3=>3⋮n+3\)
Hay n+3 thuộc Ư(3)
=> n+ 3 thuộc { -3;-1;1;3}
=> n thuộc { -6; -4; -2;0}
Mà n thuộc N nên n =0
\(A=2+2^2+2^3+...+2^{98}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{97}+2^{98}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{97}\left(1+2\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{97}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{97}\right)⋮3\left(đpcm\right)\)