\(^{2019}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

để 2018 ngũ x + 2019 ngũ y = 2020 ngũ z thì 2018+2019=2020

suy ra x,z,y =1

5 tháng 3 2020

Xét tổng:

(x - 2y) + (4y - 5z) + (z - 3x)

= x - 2y + 4y - 5z + z - 3x

= 2y - 4z - 2x là số chẵn

Mà |x - 2y| + |4y - 5z| + |z - 3x| cùng tính chẵn lẻ với tổng (x - 2y) + (4y - 5z) + (z - 3x)

=> |x - 2y| + |4y - 5z| + |z - 3x| là số chẵn, khác 2011

=> không tồn tại các giá trị nguyên của x; y; z thỏa mãn đề bài ( đpcm)

+)Ta có:\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2011\)

\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x=2011-x+2y-4y+5z-z+3x\)\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+x-3x=2011+2x+\left(-2y\right)+4z\)

+)Ta có các TH:

*TH1:\(x< 0\)

\(\Rightarrow\left|x\right|+x=-x+x=0⋮2\)(1)

*TH2:\(x=0\)

\(\Rightarrow\left|x\right|+x=0+0=0⋮2\) (2)

*TH3:\(x>0\)

\(\Rightarrow\left|x\right|+x=x+x=2x⋮2\)(3)

+)Từ (1);(2) và (3)

\(\Rightarrow\left|x\right|+x⋮2;\forall x\)

\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x⋮2\)

Mà \(2011+2x+\left(-2y\right)+4z⋮̸2\)(vì \(2x⋮2;\left(-2y\right)⋮2;4z⋮2;2011⋮̸2\))

\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+x-3x\ne2011+2x+\left(-2y\right)+4z\)

\(\Rightarrow\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|\ne2011\)

=>Không tồn tại các số nguyên x,y,z thỏa mãn:\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|\ne2011\)(ĐPCM)

Chúc bn học tốt

4 tháng 11 2018

bn gõ đề sai rùi bạn ơi

4 tháng 11 2018

đúng mà bạn .

11 tháng 1 2018

a, Nếu n = 2k ( k thuộc N ) thì : 7^n+2 = 49^n+2 = [B(3)+1]^n+2 = B(3)+1+2 = B(3)+3 chia hết cho 3

Nếu n=2k+1 ( k thuộc N ) thì : 7^n+2 = 7.49^n+2 = (7.49^n+14)-12 = 7.(49^n+2)-12 chia hết cho 3 ( vì 49^n+2 và 12 đều chia hết cho 3 )

=> (7^n+1).(7^n+2) chia hết cho 3 với mọi n thuộc N

Tk mk nha

11 tháng 1 2018

b, Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y)(y + z)(z + x) chia hết cho 2

=> (x + y)(y + z)(z + x) + 2016 chia hết cho 2 (vì 2016 chia hết cho 2)

Mà 20172018 không chia hết cho 2

Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài