Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo nhé!
Câu hỏi của Trần Đỗ Bảo Trân - Toán lớp 6 - Học toán với OnlineMath
Để \(\frac{12n+1}{30n+2}\)là phân số tối giản thì \(\left(12n+1,30n+2\right)=1\).
Đặt \(d=\left(12n+1,30n+2\right)\).
Ta có:
\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)=1⋮d\)
Suy ra \(d=1\).
Do đó ta có đpcm.
Gọi d là ƯCLN(12n + 1; 30n + 2) Nên ta có :
12n + 1 ⋮ d và 30n + 2 ⋮ d
=> 5(12n + 1) ⋮ d và 2(30n + 2) ⋮ d
=> 60n + 5 ⋮ d và 60n + 4 ⋮ d
=> (60n + 5) - (60n + 4) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN(12n + 1; 30n + 2) = 1 nên (12n + 1)/(30n + 2) tối giản ( đpcm )
Gọi d là ƯCLN của 12n + 1 và 30n + 2
12n + 1 chia hết cho d ; 30n + 2 chia hết cho d
=> 5 ( 12n + 1 ) chia hết cho d ; 2 ( 30n + 2 ) chia hết cho d
=> 60n + 5 chia hết cho d ; 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> Đpcm
Đặt \(\left(12n+1;30n+2\right)=d\)\(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)\(\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d là ƯC ( 12n + 1 ; 30n + 2 )
=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )
=> 30n + 2 ⋮ d => 2.( 30n + 2 ) ⋮ d => 60n + 4 ⋮ d ( 2 )
=> [ ( 60n + 5 ) - ( 60n + 4 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 12n + 1 ; 30n + 2 ) = 1 nên 12n + 1 / 30n + 2 là p/s tối giản ( đpcm )
gọi d là ước chung của 12n+1va30n+2
=>12n+1 chia het d=>30n+5chia het d
Để 12n+1/30n+2 là phân số tối giản thì 12n+1 và 30n+2 phải có ƯCLN bằng 1
Gọi d là ƯCLN của 12n+1 và 30n+2
12n+1 chia hết cho d
30n+2 chia hết cho d
suy ra (30n+2 )-(12n+1) chia hết cho d
= 30n+2-12n-1 chia hết cho d
=(30n-12n) + (2-1)chia hết cho d
=8n+1
8n chia hết cho d , 1 chia hết cho d
suy ra n= 8n thì 12n+1/30n+2laf p/s tối giản
Gọi d là ƯCLN(12n + 1; 30n + 2)
Khi đó : 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
<=> 60n + 5 chia hết cho d và 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d => 1 chia hết cho d => d = 1
Vì ƯCLN(12n + 1; 30n + 2) = 1 => 12n + 1/60n + 2 là p/s tối giản
Gọi d là ƯCLN(12n+1, 30n+2)
=> 12n+1 chia hết cho d, 30n+2 chia hết cho d
=> 5(12n+1) chia hết cho d, 2(30n+2) chia hết cho d
=> 5(12n+1) - 2(30n+2) chia hết cho d
=> 60n + 5 - 60n - 4 = 1 chia hết cho d
=> d = 1
Vậy phân số trên tối giản.
bỏ n đi ta có 12+1/30+2=12/30+1/2=2/5+1/2=9/10
vay 9/10 la phan so toi gian
Gọi d là ƯCLN(12n+1;30n+2)
=>12n+1 \(\div\) d => 5(12n+1) \(\div\) d => 60n+5 \(\div\) d
và 30n + 2 \(\div\) d => 2(30n+2) \(\div\) => 60n+4 \(\div\) d
=> 60n+5-(60n+4) \(\div\) d
=> 60n+5-60n-4 \(\div\) d
=> 1 \(\div\) d
=> d=1
=> ƯCLN(12n+1;30n+2)=1
=> \(\frac{12n+1}{30n+2}\) là phân số tối giản
Gọi ƯCLN( 12n+1; 30n+2 ) = d
⇒ 12n+1 ⋮ d ⇒ 5.( 12n+1 ) ⋮ d
⇒ 30n+2 ⋮ d ⇒ 2.( 30n+2 ) ⋮ d
⇒ [2.( 30n+2 ) - 5.( 12n+1 ) ] ⋮ d
⇒ [ ( 60n+4 ) - ( 60n+5 ) ] ⋮ d
⇒ - 1 ⋮ d ⇒ d = + 1
Vì ƯC( 12n+1; 30n+2 ) = + 1 ⇒ \(\frac{12n+1}{30n+2}\) là p/s tối giản ( đpcm )