\(\dfrac{3n+2}{2n+1}\)tối giản

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Gọi d là UCLN(3n+2;2n+1)

Vì d là UCLN(3n+2;2n+1) nên

3n+2\(⋮\)d=>2(3n+2)\(⋮\)d=>6n+4\(⋮\)d

2n+1\(⋮\)d=>3(2n+1)\(⋮\)d=>6n+3\(⋮\)d

Vì 6n+3 và 6n+4\(⋮\)d nên

(6n+4)-(6n+3)\(⋮\)d

6n+4-6n-3\(⋮\)d

1\(⋮\)d

=>\(\dfrac{3n+2}{2n+1}\) tối giản với mọi n

8 tháng 6 2017

Gọi \(ƯC\left(3n+2;2n+1\right)\)\(d\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\2n+1⋮d\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6n+4⋮d\\6n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow6n+4-\left(6n+3\right)⋮d\)
\(\Leftrightarrow6n+4-6n-3⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=\pm1\)
Vậy \(\dfrac{3n+2}{2n+1}\) là phân số tổi giản \(\forall\) \(n\in Z\)
Chúc bạn học tốt!

27 tháng 4 2017

Ta gọi d là UCLN( 2n + 1 ; 3n + 2 )

\(\Rightarrow2n+1⋮d\)

\(\Rightarrow3n+2⋮d\)

\(\Rightarrow3.\left(2n+1\right)⋮d\)

\(\Rightarrow2.\left(3n+2\right)⋮d\)

Hay \(6n+3⋮d\)

\(6n+4⋮d\)

\(\Rightarrow6n+4-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d=1hoặc-1\)\(\Rightarrow dpcm\)

27 tháng 4 2017

Gọi ƯCLN(2n+1,3n+2) là d

Ta có : 2n+1 \(⋮\) d và 3n+2 \(⋮\) d

=> 3.(2n+1) \(⋮\) d và 2(3n+2) \(⋮\) d

=> 6n+3 \(⋮\) d và 6n+4 \(⋮\) d

=>(6n+4)-(6n+3) \(⋮\) d

=> 1 \(⋮\) d ( bạn tự làm phần trung gian nhé ^^)

=> d \(\inƯ\left(1\right)\)

=> d \(\in\left\{1;-1\right\}\)

Vì d lớn nhất => d =1 => ƯCLN(2n+1,3n+2) =1

=> 2n+1 và 3n+2 nguyên tố cùng nhau

=> ĐPCM

Tick nha ^^

Gọi d=ƯCLN(3n-1;2n-1)

=>2(3n-1)-3(2n-1) chia hết cho d

\(\Leftrightarrow6n-2-6n+3⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>3n-1/2n-1 là phân số tối giản

15 tháng 3 2017

a,gọi \(d\inƯC\left(2n-1,3n-1\right)\) với \(d\in N\)

\(\Rightarrow2n-1⋮d;3n-1⋮d\)

\(\Rightarrow\left[3\left(2n-1\right)-2\left(3n-1\right)\right]⋮d\)

\(\Rightarrow\left[\left(6n-3\right)-\left(6n-2\right)\right]⋮d\)

\(\Rightarrow\left(6n-3-6n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)

\(\RightarrowƯC\left(2n-1;3n-1\right)=1\)

\(\RightarrowƯCLN\left(2n-1;3n-1\right)=1\)

Vậy phân số \(\dfrac{2n-1}{3n-1}\) là phân số tối giản

15 tháng 3 2017

tôi chỉ viết phần a thôi nha

Bài 1:

Theo đề, ta có:

\(\dfrac{a+6}{b+14}=\dfrac{3}{7}\)

=>7a+42=3b+42

=>7a=3b

hay a/b=3/7

12 tháng 4 2017

Gọi d là ƯCLN của 2n+1 và 3n+2

Ta có: 2n+1 chia hết cho d và 3n+2 chia hét cho d

=> (2n+1) - (3n+2) chia hết cho d

=> 3(2n+1) - 2(3n+2) chia hết cho d

=> -1 chia hét cho d

=> d C Ư(-1)=[-1;1]

Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản

k mình nha KHÁNH HUYỀN

7 tháng 4 2017

Gọi d là ƯCLN(2n+1, 3n+2)

suy ra: 2n+1  chia hết cho d

23 tháng 4 2017

Để phân số \(\frac{2n+1}{3n+2}\)tối giản, ta cần chứng minh ƯCLN(2n+1; 3n+2) = 1 hoặc -1

Giả sử ƯCLN(2n+1; 3n+2) = d (d khác 1 và -1), ta có:

\(\left(2n+1\right)⋮d\) và \(\left(3n+2\right)⋮d\)

\(\Rightarrow\left[\left(3n+2\right)-\left(2n+1\right)\right]⋮d\) hay \(\left(n+1\right)⋮d\)

Vì \(\left(2n+1\right)⋮d\) và \(\left(n+1\right)⋮d\)

\(\Rightarrow\left[\left(2n+1\right)-\left(n+1\right)\right]⋮d\) hay \(n⋮d\)

Vì  \(n⋮d\) nên \(2n⋮d\), mà \(\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\) hay d = 1 hoặc d = -1.

Vậy phân số \(\frac{2n+1}{3n+2}\) tối giản.

23 tháng 4 2017

Gọi d là UCLN của 2n +1 và 3n+2

2n+1\(⋮\)d

\(3n+2⋮d\)

\(\Rightarrow3\left(2n+1\right)⋮\)d và \(2\left(3n+2\right)⋮\)d

\(\Rightarrow6n+3⋮d\);\(6n+4⋮d\)

\(\Rightarrow6n+4-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow dpcm\)

6 tháng 5 2016

Gọi UCLN(2n + 1 ; 3n + 2) = d

2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 chia hết cho d

3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 chia hết cho d

=> [(6n + 4) - (6n + 3)] chia hết cho d

1 chia hết cho d => d = 1

Vì UCLN(2n + 1 ; 3n + 2) = 1

Nên 2n + 1/3n + 2 tối giản (với mọi n thuộc N)

6 tháng 5 2016

goij d là ước chung của 2n +1 và 3n+2

2n+1chia hết cho d => 3(2n+1) chia hết cho d => 6n +3 chia hết cho d (1)

3n+2 chia hết cho d=> 2(3n +2)chia hết cho d => 6n + 4 chia hết cho d (2)

lấy (2) trừ (1) ta có 1 chia hết cho d vậy d=cộng trừ 1

nên phân số đã cho tối giản

 

 

30 tháng 4 2019

                                                Lời giải:

Gọi d là ƯCLN\((2n+1,3n+2)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)

=> \(\hept{\begin{cases}3(2n+1)⋮d\\2(3n+2)⋮d\end{cases}}\)

=> \(\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

=> \((6n+4)-(6n+3)⋮d\)

=> \(1⋮d\)

=> \(d=1\)

Vậy phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản