K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

vì x^2 \(\ge\) 0 

  (x-1)\(\ge\) 0

=>x^2+(x-1)\(\ge\)  0

mà theo bài cho x^2 +(x-1)= 0 (giả sử đa thức có nghiệm)

=>{x^2=0 => x=0 (1)

=>{(x-1)^2=0 => x-1 =0 => x=1(2)

từ (1) và(2) => x\(\in\)  rỗng => đa thức ko có nghiệm

    

18 tháng 4 2019

P(x)=3x^4+2x^2+2

Ta có 3x^4 >=0 , 2x^2 >=0 =. P(x)>0 

Vậy P(x) vô nghiêm

Học tốt

18 tháng 4 2019

Ta có: P(x) = 4x3 + 3x4 - 2x2 - x3 + 4x2 - 3x3 + 2

P(x) = (4x3 - x3 - 3x3) + 3x4 - (2x2 - 4x2) + 2

P(x) = 3x4 + 2x2 + 2 \(\ge\)2 > 0

(vì 3x4 \(\ge\)0; 2x2 \(\ge\)0; 2 > 0)

=> Đa thức P(x) ko có nghiệm

11 tháng 5 2019

\(x^2-4x+5=\left(x-2\right)^2+1\ge0\)

Vậy M(x) không có nghiệm

11 tháng 5 2019

Vì \(x^2\ge0;4x\ge0\Rightarrow x^2-4x+5\ge0+5>0\)

\(\Rightarrow M\left(x\right)=x^2-4x+5\)không có nghiệm

7 tháng 5 2018

\(f\left(x\right)=x^2+x+x+2\)

\(f\left(x\right)=x^2+2x+1+1\)

\(f\left(x\right)=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\)

\(\Leftrightarrow\left(x+1\right)^2+1\ge0\)

\(\Leftrightarrow f\left(x\right)\ge1\)

Vậy f(x) > 0 nên phương trình không có nghiệm

7 tháng 5 2018

Ta có : \(f\left(x\right)=x^2+x+x+2\)

                      \(=x^2+x+x+1+1\)

                      \(=x\left(x+1\right)+\left(x+1\right)+1\)

                      \(=\left(x+1\right)\left(x+1\right)+1\) 

                      \(=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)

Vậy đa thức f(x) không có nghiệm

_Chúc bạn học tốt_

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

19 tháng 4 2018

ta có f(x)=x2+(x+1)2

Do x2\(\ge0\),\(\left(x+1\right)^2\ge0\)

\(\Rightarrow x^2+\left(x+1\right)^2>0\)

(vì không thể đồng thời x=x+1=0 được vì\(x\ne x+1\))

=> đa thức f(x) vô nghiệm (đpcm)

tk mk nha bn

***** Chúc bạn học giỏi*****

19 tháng 4 2018

F(x)=x^2+(x+1)^2

       =x^2+x^2+1^2

       =2x^2+1

Mà x^2>=0  =>2x^2>=0   =>2x^2+1>=1>0 với mọi x

=>F(x) vô nghiệm

9 tháng 4 2018

\(f\left(x\right)=2x^2+x+1=2\left(x^2+\frac{1}{2}x\right)+1\)

\(=2\left(x^2+2\cdot\frac{1}{4}x+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2\right)+1\)

\(=2\left(x+\frac{1}{4}\right)^2-2\cdot\left(\frac{1}{4}\right)^2+1=2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}\)

Vì \(2\left(x+\frac{1}{4}\right)^2\ge0\) => \(f\left(x\right)=2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}>0\)

=> f(x) vô nghiệm 

13 tháng 5 2018

câu này mk ko bt

8 tháng 4 2018

a/ f(x) = \(\frac{1}{3}x^4+\frac{3}{2}+1=\frac{1}{3}x^4+\frac{5}{2}\)

Ta có \(\frac{1}{3}x^4\ge0\)với mọi giá trị của x

=> \(\frac{1}{3}x^4+\frac{5}{2}>0\)với mọi giá trị của x

=> f (x) vô nghiệm (đpcm)

b/ \(P\left(x\right)=-x+x^5-x^2+x+1=x^5-x^2+1=x^2\left(x^3-1\right)+1\)

Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)+1>0\)với mọi giá trị của x

=> P (x) vô nghiệm (đpcm)