\(x^2+2x+2=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2022

\(x^2+2x+2=0\\ \Leftrightarrow\left(x^2+2x+1\right)+1=0\\ \Leftrightarrow\left(x+1\right)^2+1=0\)

VÌ \(\left(x+1\right)^2\ge0\forall x;1>0\Rightarrow\left(x+1\right)^2+1>0\)

Vậy pt vô nghiệm

18 tháng 4 2018

\(a)\) Ta có : 

\(\left(x-1\right)^2\ge0\)

\(3x^2\ge0\)

\(\Rightarrow\)\(\left(x-1\right)^2+3x^2\ge0\)

Dấu "=" xảy ra tức là phương trình có nghiệm x khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=0\end{cases}}}\)

Vậy phương trình có nghiệm \(x=0\) và \(x=1\)

Đề sai nhé 

18 tháng 4 2018

\(b)\) Ta có : 

\(x^2+2x+3\)

\(=\)\(\left(x^2+2x+1\right)+2\)

\(=\)\(\left(x+1\right)^2+2\ge2>0\)

Vậy đa thức \(x^2+2x+3\)  vô nghiệm 

Em mới lớp 7 có gì sai anh thông cảm nhé 

18 tháng 1 2019

a/ \(x^2+2x+3=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2\ge2>0\forall x\)

Vậy phương trình trên vô nghiệm.

b) \(\left(x-1\right)^2+3x^2=4x^2-2x+1=4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Vậy phương trình trên vô nghiệm

4 tháng 5 2017

a/ ta có: 2(x+1)=3+2x

=> 2x +2 = 3+ 2x

=>2x-2x=3-2

=>0=1 (vô lí) =>đpcm

4 tháng 5 2017

b/ 2(1-1,5x)+3x=0 =>2-3x+3x=0

=>0=-2 (vô lí ) =>đpcm

c/ vô nghiệm vì không có giá trị tuyệt đối nào mà kết quả là số âm

13 tháng 1 2019

\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)

\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)

\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)

Vậy phương trình vô nghiệm

p/s: mk ko bt cách trình bài => sai sót bỏ qua

26 tháng 2 2020

a) \(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)

Vậy phương trình vô nghiệm (ĐPCM)

b) \(x^4-2x^3+4x^2-3x+2=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+\left(x^2-x+\frac{1}{4}\right)+\left(x^2+\frac{3}{4}\right)=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)=0\)

Có : \(\left(x^2-x\right)^2\ge0\)

        \(\left(x-1\right)^2\ge0\)

        \(\left(x-\frac{1}{2}\right)^2\ge0\)

          \(x^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)\ge\frac{3}{4}\)

Vậy phương trình vô nghiệm.(ĐPCM)

6 tháng 5 2017

a) ĐK: \(2x+2\ge0\Leftrightarrow x\ge-1\)

\(\left|2x+3\right|=2x+2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x+2\\2x+3=-2x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-2x=2-3\\2x+2x=-2-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0x=-1\left(vonghiem\right)\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}vonghiem\\x=\dfrac{-5}{4}\left(khongTMĐK\right)\end{matrix}\right.\)

vậy S=\(\varnothing\)

b)ĐK:\(5x-5\ge0\Leftrightarrow x\ge1\)

\(\left|5x-3\right|=5x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-3=5x-5\\5x-3=5-5x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0x=-2\\10x=8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}vonghiem\\x=0,8\left(KhongTMĐK\right)\end{matrix}\right.\)

Vậy S=\(\varnothing\)