\(a^m\)+ an=am+n

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

ok rồi đúng đấy

25 tháng 9 2017

đó là câu hỏi mà]

20 tháng 6 2017

Mình ko biết sory

6 tháng 8 2017

nhìn mà ko muốn nghĩ luôn

28 tháng 3 2017

a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )

28 tháng 3 2017

b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)

Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1

19 tháng 10 2018

6^2n + 19^n - 2^n+1 = 6^2n + 19^n - 2.2^n = 36^n - 2^n + 19^n -2^n = (36-2) + (19-2)  = 34 + 17

Vì 34 và 17 đều chia hết cho 17. Suy ra 34 + 17 chia hết cho 17. Suy ra M chia hết cho 17

10 tháng 8 2015

(am)n = am.am.........am (n thừa số am)

= am+m+m+.....+m (n số hạng m)

= am.n (đpcm)

10 tháng 8 2015

(a^m)^n = (a.a.a..a)^n ( m số a ) 

 = a^n . a^n . a^n ....a^n  ( m số a^n)

= a^n+n+n+...+n ( m số n )

=a^m.n  ( ĐPCM)

25 tháng 9 2016

a) am = an

=> am - an = 0

=> an.(am-n - 1) = 0

=> an = 0 hoặc am-n - 1 = 0

=> a = 0 hoặc am-n = 1

=> a = 0 hoặc m - n = 0

=> m = n

b) am > an

=> am - an > 0

=> an.(am-n - 1) > 0

=> an và am-n - 1 cùng dấu

Mà a > 0 => an > 0 => am-n - 1 > 0

=> am-n > 1

=> m - n > 0

=> m > n

4 tháng 7 2017

a) (am)n = am.am.am.......am (n lần am) =am.n

b) Ta có: ( - 2)3000= 23000 = (23)1000=81000

              ( -3)2000= 32000= ( 32)1000 =91000

Vì 8<9 nên 81000<91000

Vậy ( -2)3000 < ( -3)2000

                   

4 tháng 7 2017

Bài 1a) Đó là công thức lũy thừa của lũy thừa rồi bạn:

\(\left(a^m\right)^n=a^{m\cdot n}\)

1b) \(\left(-2\right)^{3000}=2^{3000}\)

\(\left(-3\right)^{2000}=3^{2000}\)

\(\Rightarrow2^{3000}=\left(2^3\right)^{1000}\)

\(\Rightarrow3^{2000}=\left(3^2\right)^{1000}\)

\(2^3< 3^2\)

\(\Rightarrow\left(-2\right)^{3000}< \left(-3\right)^{2000}\)

5 tháng 11 2016

a.

Ta có: \(405^n=......5\)

\(2^{405}=2^{404}\cdot2=\left(.......6\right)\cdot2=.......2\)

\(m^2\) là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác 0 \(\Rightarrow A⋮10\)

b.

\(B=\frac{2n+9}{n+2}+\frac{5}{n+2}\frac{n+17}{ }-\frac{3n}{n+2}=\frac{2n+9+5n+17-3n}{n+2}=\frac{4n+26}{n+2}\)

\(B=\frac{4n+26}{n+2}=\frac{4\left(n+2\right)+18}{n+2}=4+\frac{18}{n+2}\)

Để B là số tự nhiên thì \(\frac{18}{n+2}\) là số tự nhiên

\(\Rightarrow18⋮\left(n+2\right)\Rightarrow n+2\inư\left(18\right)=\left\{1;2;3;6;9;18\right\}\)

+ \(n+2=1\Leftrightarrow n=-1\) ( loại )

+ \(n+2=2\Leftrightarrow n=0\)

+ \(n+2=3\Leftrightarrow n=1\)

+ \(n+2=6\Leftrightarrow n=4\)

+ \(n+2=9\Leftrightarrow n=7\)

+ \(n+2=18\Leftrightarrow n=16\)

Vậy \(n\in\left\{0;1;4;7;16\right\}\) thì \(B\in N\)

c.

Ta có \(55=5\cdot11\)\(\left(5;1\right)=1\)

Do đó \(C=\overline{x1995y}⋮55\)\(\Leftrightarrow\)\(\begin{cases}C⋮5\\C⋮11\end{cases}\) \(\frac{\left(1\right)}{\left(2\right)}\)

\(\left(1\right)\Rightarrow y=0\) hoặc \(y=5\)

+ \(y=0\div\left(2\right)\Rightarrow x+9+5-\left(1+9+0\right)⋮11\Rightarrow x=7\)

+ \(y=5\div\left(2\right)\Rightarrow x+9+5-\left(1+9+5\right)⋮11\Rightarrow x=1\)

5 tháng 11 2016

Chết thiếu câu c nữa