\(⋮\)3

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

A có 100 số hạng.

nhóm 2 số hạng thành 1 nhóm, ta có 100/2=50 nhóm

A=(1+5)+(5^2+5^3)+...+(5^98+5^99)

A=6+5^2.(1+5)+...+5^98.(1+5)

A=6.(1+5^2+...+5^98)

vì 6 chia hết cho 3

suy ra 6.(1+5^2+...+5^98) chia hết cho 3

nên A chia hết cho 3

                   đpcm( điều phải chứng minh)

13 tháng 10 2018

\(\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+....+\left(2^2+2\right)\)

\(=2^9.\left(2+1\right)+2^7.\left(2+1\right)+...+2.\left(2+1\right)\)

\(=2^9.3+2^7.3+...+2.3\)

\(=3.\left(2^9+2^7+...+2\right)⋮3\)

P/S: mấy bài khác tương tự

13 tháng 10 2018

\(a,2^{10}+2^9+2^8+...+2\)

\(=\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+...+\left(2^2+2\right)\)

\(=2^9\left(2+1\right)+2^7\left(2+1\right)+...+2\left(2+1\right)\)

\(=2^9.3+2^7.3+...+2.3\)

\(=3\left(2^9+2^7+...+2\right)⋮3\left(đpcm\right)\)

\(b,1+3+3^2+3^3+...+3^{99}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)

\(=4+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)

\(=4+3^2.4+...+3^{98}.4\)

\(=4\left(1+3^2+...+3^{98}\right)⋮4\left(đpcm\right)\)

\(c,1+5+5^2+5^3+...+5^{1975}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{1974}+5^{1975}\right)\)

\(=6+5^2\left(1+5\right)+...+5^{1974}\left(1+5\right)\)

\(=6+5^2.6+...+5^{1974}.6\)

\(=6\left(1+5^2+...+5^{1974}\right)⋮6\left(đpcm\right)\)

24 tháng 5 2017

2. Chứng tỏ:\(\dfrac{2}{5}< A< \dfrac{8}{9}.\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

Giải:

Ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}.\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}.\)

\(A< 1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\dfrac{1}{9}.\)

\(A< 1+0+0+0+...+0-\dfrac{1}{9}.\)

\(A< 1-\dfrac{1}{9}.\)

\(A< \dfrac{8}{9}_{\left(1\right)}.\)

Ta lại có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)

\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}.\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}+0+0+0+...+\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}-\dfrac{1}{10}.\)

\(A>\dfrac{4}{10}.\)

\(\Rightarrow A>\dfrac{2}{5}_{\left(2\right)}.\) (vì \(\dfrac{4}{10}=\dfrac{2}{5}.\))

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\).

\(\Rightarrow A< \dfrac{8}{9}\)\(A>\dfrac{2}{5}.\)

\(\Rightarrow\) \(\dfrac{8}{9}>A>\dfrac{2}{5}\) hay \(\dfrac{2}{5}< A< \dfrac{8}{9}.\)

Vậy ta thu được \(đpcm.\)

~ Học tốt!!!... ~ ^ _ ^

23 tháng 5 2017

Câu 2 : Câu hỏi của Nguyễn Thu Hà - Toán lớp 6 | Học trực tuyến

5 tháng 8 2023

a, A = 2 + 22 + 23 + 24 +....+ 260

A = (2 + 22) + ( 23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 + 2) +...+ 259.(1 + 2)

A = 2.3 + 23.3 +...+ 259.3

A = 3.( 2 + 23+...+ 259) vì 3 ⋮ 3 ⇒ A = 3.(2 + 23 +...+ 259) ⋮ 3 (đpcm)

A = 2 + 22 + 23+ 24+...+ 260 

A = ( 2 + 22 + 23) + ( 24 + 25 + 26) +...+ (258 + 259 + 260)

A = 2.( 1 + 2 + 4) + 24.(1 + 2 + 4)+...+ 258.(1 + 2+4)

A = 2.7 + 24.7 +...+258.7

A = 7.(2 + 2+ ...+ 258) vì 7 ⋮ 7 ⇒ A = 7.(2 + 24+...+ 258)⋮ 7(đpcm)

    A = 2 + 22 + 23 + 24 +...+ 260

    A = (2 + 22 + 23 + 24) +...+( 257 + 258 + 259+ 260)

   A = 2.(1 + 2 + 22 + 23) +...+ 257.(1 + 2 + 22+23)

   A = 2.30 + ...+ 257. 30

  A = 30.( 2 +...+ 257) vì 30 ⋮ 15 ⇒ 30.( 2 + ...+ 257) ⋮ 15 (đpcm)

 

 

 

 

3 tháng 11 2017

a/ \(1+5+5^2+..........+5^{501}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+............+\left(5^{500}+5^{501}\right)\)

\(=1\left(1+5\right)+5^2\left(1+5\right)+...........+5^{500}\left(1+5\right)\)

\(=1.6+5^2.6+.............+5^{500}.6\)

\(=6\left(1+5^2+..........+5^{500}\right)⋮6\left(đpcm\right)\)

b/ \(2+2^2+2^3+............+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+............+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+............+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+..........+2^{96}.31\)

\(=31\left(2+........+2^{96}\right)⋮31\left(đpcm\right)\)

3 tháng 11 2017

a)1+5+5^2+5^3+........+5^501

= 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501)

=6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500)

=6+150(5^2+5^3+.......+5^500)

mà 6 chia hết cho 6

150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500) chia hết cho 6

=> 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501) chia hết cho 6

=> 1+5+5^2+5^3+........+5^501 chia hết cho 6

a)

  •  \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{58}.7\)

\(=7\left(2+2^4+2^{58}\right)⋮7\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=2.15+2^5.15+...+2^{57}.15\)

\(=15\left(2+2^5+2^{57}\right)⋮15\)

b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)

\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)

\(=31+5^3.31+...+5^{96}.31\)

\(=31\left(1+5^3+...+5^{96}\right)⋮31\)

12 tháng 8 2016

Bài 1:

C = 1/101 + 1/102 + 1/103 + ... + 1/200

Có:

C < 1/101 + 1/101 + 1/101 + ... + 1/101

C < 100 . 1/101

C < 100/101

Mà 100/101 < 1

=> C < 1 (1)

Có:

C > 1/200 + 1/200 + 1/200 + ... + 1/200

C > 100 . 1/200

C > 1/2 (2)

Từ (1) và (2)

=> 1/2<C<1

Ủng hộ nha mk làm tiếp

6 tháng 7 2018

❤ѕѕѕσиɢσкυѕѕѕ❤

6 tháng 7 2018

Bớt xàm đi ông

5 tháng 12 2017

câu hỏi này nhiều rồi nhé: xem câu hỏi tương tự

Nếu không muốn: Gợi ý : cứ nhóm 2 số hạng một  Ví dụ (5 + 5^2) = 5(5+1) = 5.6......

các nhóm đều xuất hiện thừa số 6 nên tổng chia hết cho 6.....

câu b cũng tương tự