Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10^n\)có 1 chữ số 1 và n chữ số 0 nên tổng các chữ số của \(10^n+8\)bằng 9, do vậy nó chia hết cho 9
\(M=2+2^3+2^5+2^7+....+2^{51}\)
\(=\left(2+2^3\right)+\left(2^5+2^7\right)+....+\left(2^{49}+2^{51}\right)\)
\(=10+2^4\left(2+2^3\right)+....+2^{48}\left(2+2^3\right)\)
\(=10+2^4.10+...+2^{48}.10\)
\(=10\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮10\)
\(=2.5.\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮5\)
\(M=2+2^3+2^5+2^7+....+2^{51}.\)
\(M+2^{ }=2+2+2^3+2^5+2^7+.....+2^{51}\)
\(=\left(2+2+2^3\right)+\left(2^5+2^7+2^9\right)+....+\left(2^{47}+2^{49}+2^{51}\right)\)
\(=12+2^4\left(2+2^3+2^5\right)+......+2^{46}\left(2+2^3+2^5\right)\)
\(=12+2^4.42+....+2^{46}.42\)
\(=12+7.3.2\left(2^4+...+2^{46}\right)\)
\(\Rightarrow M=\left[12+7.3.2\left(2^4+.....+2^{46}\right)\right]-2\)
\(=10+7.3.2\left(2^4+....+2^{46}\right)\)
Ta có: \(7.3.2\left(2^4+...+2^{46}\right)⋮7\)mà 10 không chia hết cho 7
Suy M không chia hết cho 7
a 2001^2017 -1 chia hết cho 10
ta có 2001^ 2017 -1^2017 chia hết cho 10
ta thấy 2 số này có chung số mũ , ta lại có
2001-1=2000 ( 2000 chia hết cho 10)
ta chứng minh được 2001^2017 -1 chia hết cho 10
còn những câu khác bạn tự làm nha
34n sẽ có tận cùng bằng 1
(......1) - (.....6) = (......5) chia hết cho 5 (đpcm)
a) tổng S bằng
(2014+4).671:2=677 039
b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n
→2n.(n+2013)\(⋮̸\)2
C)M=2+22+23+...+220
=(2+22+23+24)+...+(217+218+219+220)
=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)
=30.1+...+216.(2+22+23+24)
=30.1+...+216.30
=30(1+25+29+213+216)\(⋮\)5
c, M= 2 + 22 + 23 +........220
Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5
Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)
= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )
= 30+24 .30 + 28. 30 +.........+ 216.30
= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5
Vậy M chia hết cho 5