K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2024

\(A=3+3^2+3^3+...+3^{99}\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)

`A =` \(\left(3+3^2+3^3\right).\left(1+3^3+...+3^{96}\right)\)

`A =` \(39.\left(1+3^3+...+3^{96}\right)\)

Mà `39 ⋮ 13`

`=> A  ⋮ 13` (đpcm)

6 tháng 10 2018

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)....+\left(3^{97}+3^{98}+3^{99}\right)\)

\(A=3.\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)...+3^{97}.\left(1+3+3^2\right)\)

\(A=3.13+3^4.13+...+3^{97}.13\)

\(A=13.\left(3+3^4+..+3^{97}\right)⋮13\)

Vậy...

6 tháng 10 2018

\(A=3+3^2+3^3+...+3^{99}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)

\(A=3\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\)

\(A=3\cdot13+...+3^{97}\cdot13\)

\(A=13\cdot\left(3+...+3^{97}\right)⋮13\left(đpcm\right)\)

20 tháng 10 2017

A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^97+3^98+3^99)

A=3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^97.(1+3+3^2)

A=3.13+3^4.13+...+3^97.13

A=13.(3+3^4+...+3^97) chia hết cho 13

20 tháng 10 2017

\(A=3+3^2+3^3+....+3^{99}\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)

\(A=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{97}.\left(1+3+3^2\right)\)

\(A=3.13+3^4.13+....+3^{97}.13\)

\(A=13.\left(3+3^4+....+3^{97}\right)\)

\(\Leftrightarrow A⋮13\)

Vậy: \(A⋮13\)

Nhớ k cho mình nhé! Thank you!!!

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui
12 tháng 7 2018

ai tích mình mình tích lại cho

1 tháng 3 2020

k di

e he he

10 tháng 11 2019

a)Ta có:A=3+32+33+...+318

            =(3+32)+(33+34)+...+(317+318)

            =3(1+3)+33(1+3)+...+317(1+3)

            =3.4+33.4+...+317.4

Vì 4\(⋮\)4 nên 3.4+33.4+...+317.4\(⋮\)4

hay A\(⋮\)4

Ta có:A=3+32+33+...+318

            =(3+32+33)+(34+35+36)+...+(316+317+318)

            =3(1+3+32)+34(1+3+32)+...+316(1+3+32)

            =3.13+34.13+...+316.13

Vì 13\(⋮\)13 nên 3.13+34.13+...+316.13\(⋮\)13

hay A\(⋮\)13

Vậy A chia hết cho 4, 13.

10 tháng 11 2019

A=3+32+33+...+318

A=(3+32)+(33+34)+...+(317+318)

A=3(1+3)+33(1+3)+...+317(1+3)

A=3x4+33x4+...+317x4

A=4x(1+33+...+317) chia hết cho 4