K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

A = 2 + 22 +23 + 24 +...+260 ( có 60 số hạng)

A = (2+22 +23) + (24+25+26) + ...+ (258 +259 + 260)

A = 2.(1+2+2^2) + 2^4.(1+2+2^2) + ...+ 2^58.(1+2+2^2)

A = 2.7 + 2^4.7 + ...+ 2^58.7

A = 7.(2+2^4+...+2^58) chia hết cho 7

A chia hết cho 15 thì bn làm tương tự nha! Gợi ý: nhóm 4 số hạng với nhau

20 tháng 12 2018

cam on ban nha

10 tháng 3 2016

nhin phe vai

10 tháng 3 2016

1) a không chia hết cho 9

2) chia hết cho 3

3) 

4

5

6

7

8

trên mạng

17 tháng 12 2017

Bài 1:

Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)

Thay a = 16.m, b = 16.n vào a+b = 128, ta có:

\(16.m+16.n=128\)

\(\Rightarrow16.\left(m+n\right)=128\)

\(\Rightarrow m+n=128\div16\)

\(\Rightarrow m+n=8\)

Vì m và n nguyên tố cùng nhau

\(\Rightarrow\) Ta có bảng giá trị:

m1835
n8153
a161284880
b128168048

Vậy các cặp (a,b) cần tìm là:

  (16; 128); (128; 16); (48; 80); (80; 48).

Bài 2:

Gọi d là ƯCLN (2n+1, 2n+3), d  \(\in\) N*

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Vì 2n+3 và 2n+1 không chia hết cho 2

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)

\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.

17 tháng 12 2017

cam on ban nhieu lam cuu tinh