Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1/ \(A=1+7+7^2+7^3+7^4+7^5\) Nhân hai vế với 7 được :
\(7A=7+7^2+7^3+7^4+7^5+7^6\) Do đó : \(6A=7^6-1\) (Đã lấy đẳng thức dưới trừ đẳng thức trên vế theo vế tương ứng)
Suy ra : \(A=\frac{\left(7^3\right)^2-1}{6}=\frac{\left(7^3-1\right)\left(7^3+1\right)}{6}=\)\(\frac{\left(7-1\right)\left(7^2+7.1+1^2\right)\left(7+1\right)\left(7^2-7.1+1^2\right)}{6}\)
(Đã khai triển các hằng đẳng thức đáng nhớ ) Như vậy : \(A=\left(7^2+8\right).8.\left(7^2+6\right)\) Là số chia hết cho 8
Câu 2/ Chứng tỏ : (2n + 5) chia hết cho (n + 1) .Câu này đề sai .Khi n = 1 đã sai rồi .
Câu 3 : Giải tương tự câu 1
Câu 3:
a: \(\Leftrightarrow n-1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
b: \(\Leftrightarrow4n+2+1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow4n-5=13k\left(k\in Z\right)\)
\(\Leftrightarrow n=\dfrac{13k+5}{4}\)
Bài 2.để 2 số hạn đầu tiên lại,còn lại 99 số ta chia làm 33 nhóm mỗi nhóm có 3 số liên tiếp nhau.
Ta có \(=2+2^2+2^3+2^4+.....2^{100}\)
\(=2+2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+....+2^{98}\left(1+2+2^2\right)\)
\(=2+2.7+2^5.7+.....+2^{98}.7\)
\(\Rightarrow\)Tổng này chia 7 dư 2
bài 1
abcabc=abc.1001
có 1001chia hết cho 7
=>abc.1001 chia hết cho 7
còn chia hết cho 11 và 13 thì tương tự
bài 2
A=(2100+299+298)+...+(24+23+22)+21
A=(298.22+298.21+298.1)+....+(22.22+22.21+22.1)+21
A=298.(22+21+1)+...+22.(22+21+1)+21
A=298.7+...+22.7+21
A=(298+22).7 +21
có 7 chia hết co 7
=>(298+22).7 chia hết cho 7
=>Achia 7 dư 21
1/a/ \(A=2+2^2+2^3+....+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^9+2^{10}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^9\left(1+2\right)\)
\(=2.3+2^3.3+....+2^9.3\)
\(=3\left(2+2^3+.....+2^9\right)⋮3\)
\(\Leftrightarrow A⋮3\left(đpcm\right)\)
b/ \(A=2+2^2+2^3+....+2^{10}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31\)
\(=31\left(2+2^6\right)⋮31\)
\(\Leftrightarrow A⋮31\left(đpcm\right)\)
2/ Với mọi n là số tự nhiên thì \(n\) có hai dạng :
\(\left[{}\begin{matrix}n=2k\\n=2k+1\end{matrix}\right.\)
+) \(n=2k\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+4\right)\left(2k+7\right)\)
Mà \(2k+4⋮2\)
\(\Leftrightarrow\left(2k+4\right)\left(2k+7\right)⋮2\)
\(\Leftrightarrow B\) là số chẵn
+) \(n=2k+1\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+1+4\right)\left(2k+1+7\right)=\left(2k+5\right)\left(2k+8\right)\)
Mà \(2k+8⋮2\)
\(\Leftrightarrow\left(2k+5\right)\left(2k+8\right)⋮2\)
\(\Leftrightarrow B\) là số chẵn
Vậy...
1/
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(A=2.3+2^3.3+2^5.5+...+2^9.3=3.\left(2+2^3+...+2^9\right)\)
Do \(3⋮3\Rightarrow A⋮3\)
\(A=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)
\(A=2.31+2^6.31=31\left(2+2^6\right)\)
Do \(31⋮31\Rightarrow A⋮31\)
2/ \(B=\left(n+4\right)\left(n+7\right)\)
Nếu n chẵn, đặt \(n=2k\Rightarrow B=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)\)
Do 2 chẵn nên B chẵn
Nếu n lẻ, đặt \(n=2k+1\Rightarrow B=\left(2k+5\right)\left(2k+8\right)=2\left(2k+5\right)\left(k+4\right)\)
2 chẵn nên B chẵn
Vậy B luôn chẵn với mọi n
3/ Đề là B(112) hay B(121) bạn?
Vì n là số tự nhiên nên n có dạng:
n=2k hoặc n= 2k+1 ( k ∈N∈N)
Với n=2k thì: (n+3)(n+12) = (2k+3)(2k+12)
= 2(2k+3)(k+6)⋮⋮2
⇒⇒(n+3)(n+12) ⋮2⋮2
Với n = 2k+1 thì: (n+3)(n+12)= (2k+1+3)(2k+1+12)
= (2k+4)(2k+13)
= 2(k+2)(2k+13)⋮2⋮2
⇒⇒ (n+3)(n+12)⋮2⋮2
Vậy (n+3)(n+12) là số chia hết cho 2 với mọi số tự nhiên n
Bài 2:
a)\(8^{10}-8^9-8^8=\left(8^8.8^2\right)-\left(8^8.8\right)-8^8\)
\(=8^8.8^2-8^8.8-8^8=8^8.\left(8^2-8-1\right)\)
\(=8^8.55\Rightarrow8^{10}-8^9-8^8⋮55\)
b)\(7^6+7^5-7^4=\left(7^4.7^2\right)+\left(7^4.7\right)-7^4\)
\(=7^4.7^2+7^4.7-7^4\)\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.55\Rightarrow7^6+7^5-7^4⋮11\)
3)7+7^2+7^3+...+7^100
=>7C-C=7^101-7
=>C=\(\frac{7^{101}-7}{6}\)