Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Rút gọn : \(M=5+5^2+5^3+...+5^{100}\)
b) Chứng tỏ : \(N=5^1+5^2+5^3+5^4+...+5^{2010}⋮6\) và \(31\)
a, \(M=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow5M=5^2+5^3+5^4+...+5^{101}\)
\(\Rightarrow5M-M=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+....+5^{100}\right)\)
\(\Rightarrow4M=5^{101}-5\)
\(\Rightarrow M=\frac{5^{101}-5}{4}\)
Vậy : \(M=\frac{5^{101}-5}{4}\)
a) \(M=5+5^2+5^3+...+5^{100}\)
=> \(5M=\left(5+5^2+5^3+...+5^{100}\right).5\)
= \(5^2+5^3+5^4+...+5^{101}\)
=> \(5M-M=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
=> \(4M=5^{101}-5\)
=> \(M=\frac{5^{101}-5}{4}\)
52+ 53 + 54 + ... + 510
= ( 52 + 53 ) + ( 54 + 55 ) + ... + ( 59 + 510 )
= 52.( 1 + 5 ) + 54.(1 + 5 ) + ... + 59.( 1 + 5 )
= 52.6 + 54.6 + ... + 59.6chia hết cho 6
Mà số chia hết cho 6 thì chia hết cho 3
Vậy tổng trên chia hết cho cả 3 và 6
5^2+5^3+5^4+...+5^9+5^10
=(5^2+5^3)+(5^4+5^5)+...+(5^9+5^10)
=(5^2.1+5^2.5)+(5^4.1+5^5.5)+...+(5^9.1+5^9.5)
=5^2.(1+5)+5^4.(1+5)+...+5^9.(1+5)
=5^2.6+5^4.6+...+5^9.6
=6.(5^2+5^4+...+5^9)
=2.3.(5^2+5^4+...+5^9)
Vậy tổng trên chia hết cho 3 và 6
\(M=2+2^3+2^5+2^7+....+2^{51}\)
\(=\left(2+2^3\right)+\left(2^5+2^7\right)+....+\left(2^{49}+2^{51}\right)\)
\(=10+2^4\left(2+2^3\right)+....+2^{48}\left(2+2^3\right)\)
\(=10+2^4.10+...+2^{48}.10\)
\(=10\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮10\)
\(=2.5.\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮5\)
\(M=2+2^3+2^5+2^7+....+2^{51}.\)
\(M+2^{ }=2+2+2^3+2^5+2^7+.....+2^{51}\)
\(=\left(2+2+2^3\right)+\left(2^5+2^7+2^9\right)+....+\left(2^{47}+2^{49}+2^{51}\right)\)
\(=12+2^4\left(2+2^3+2^5\right)+......+2^{46}\left(2+2^3+2^5\right)\)
\(=12+2^4.42+....+2^{46}.42\)
\(=12+7.3.2\left(2^4+...+2^{46}\right)\)
\(\Rightarrow M=\left[12+7.3.2\left(2^4+.....+2^{46}\right)\right]-2\)
\(=10+7.3.2\left(2^4+....+2^{46}\right)\)
Ta có: \(7.3.2\left(2^4+...+2^{46}\right)⋮7\)mà 10 không chia hết cho 7
Suy M không chia hết cho 7
\(A=5+5^2+5^3+5^4+........+5^{2010}\)
A = ( 1 + 5 + 52 ) + ............ + ( 52008 + 52009 + 52010 )
A = 31 + ......... + 31( 1 + 5 + 52 )
Mà 31\(⋮\)31 => A \(⋮\)31 ( đpcm )
đề bài sai rồi