Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{6.25}+\frac{1}{7.30}+...+\frac{1}{8.35}+\frac{1}{100.495}\)
\(=\frac{1}{6.\left(5.5\right)}+\frac{1}{7.\left(5.6\right)}+...+\frac{1}{8.\left(5.7\right)}+\frac{1}{100.\left(5.99\right)}\)
\(=\frac{1}{5}\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{99.100}\right)\)
\(=\frac{1}{5}\left[\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{8}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\right]\)
\(=\frac{1}{5}\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)\)
Mà \(\frac{1}{5}-\frac{1}{100}< \frac{1}{5}\)nên \(A=\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)< \frac{1}{5}.\frac{1}{5}=\frac{1}{25}.\)
Vậy \(A< \frac{1}{25}.\)
100-5=95 phân số
(1/100+1/6):2=53/600
(495-25):5+1=95 số
(495+5)x95:2=23750
53/600x23750=25175/12
a/ Đặt 1/5= a, ta có:
1/5 + 1/10 + 1/20 + 1/40 + ... + 1/1280
= 1/a + 1/2 x a + 1/4 x a + ... + 1/256 x a
A = 1/a + 1/2 x a + 1/4 x a + ... + 1/256 x a
2 x A = 2/a + 1/a + 1/2 x a + 1/4 x a + ... + 1/128 x a
=> A = 2/a - 1/256 x a = 2/5 - 1/1280 = 511/1280
b/
\(\frac{121}{27}.\frac{54}{11}=\frac{11.11.27.2}{27.11}=11.2=22\)
\(\frac{100}{21}:\frac{25}{126}=\frac{100}{21}.\frac{126}{25}=\frac{25.4.21.6}{21.25}=4.6=24\)
=> \(22< n< 24\)
=> \(n=23\)
a) \(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(A.2=\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{640}\)
\(A.2-A=\left(\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{640}\right)-\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\right)\)
\(A=\frac{2}{5}-\frac{1}{1280}=\frac{511}{1280}\)
b) \(\frac{121}{27}.\frac{54}{11}< n< \frac{100}{21}:\frac{25}{126}\)
\(22< n< 24\)
=> n = 23
b) Ta có: \(\frac{121}{27}.\frac{54}{11}< n< \frac{100}{21}:\frac{25}{126}\)
\(\Leftrightarrow22< n< 24\)
\(\Rightarrow n=23\)
a) Quy đồng pso và tính như bthg (4824829/6350400)
b) Vì 4814819 < 6350400 => A < 1
A = 1/4 +1/9 + 1/16 + 1/25 + 1/36
= ( 1/4 + 1/16 ) + ( 1/9 + 1/36) + 1/25
= 5/16 + 5/36 + 1/25
= 65/144 + 1/25
= 1769/3600
=> 1769/3600 < 5/6 (hay 1769/3600 < 3000/3600 -quyđồng-)
Vậy A< 5/6
Đúng nhé, tk cho mjk với-số to thiệt nhưng đúng mà-
ko b
Ta có:
\(\dfrac{1}{16}+\dfrac{1}{25}+\dfrac{1}{36}+...+\dfrac{1}{100}+\dfrac{1}{121}\\ =\dfrac{1}{4\times4}+\dfrac{1}{5\times5}+\dfrac{1}{6\times6}+...+\dfrac{1}{10\times10}+\dfrac{1}{11\times11}\\ < \dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+...+\dfrac{1}{10\times11}+\dfrac{1}{11\times12}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\\ =\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\)
Do \(\dfrac{1}{16}+\dfrac{1}{25}+\dfrac{1}{36}+...+\dfrac{1}{100}+\dfrac{1}{121}< \dfrac{1}{6}\)
\(\Rightarrow A< 2018+\dfrac{1}{6}< 2018+1=2019\)
Vậy \(A< 2019\)