Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2020}+\dfrac{1}{2020^2}+...+\dfrac{1}{2020^{2021}}\)
\(\Rightarrow2020A=1+\dfrac{1}{2020}+...+\dfrac{1}{2020^{2020}}\)
\(\Rightarrow2020A-A=\left(1+\dfrac{1}{2020}+...+\dfrac{1}{2020^{2020}}\right)-\left(\dfrac{1}{2020}+\dfrac{1}{2020^2}+...+\dfrac{1}{2020^{2021}}\right)\)
\(\Rightarrow2019A=1-\dfrac{1}{2020^{2021}}< 1\Rightarrow A< \dfrac{1}{2019}\)
Mình có cách này ngắn gọn, bạn xem thử:
a) Ta ko nói đến số 1 . Vì 2 lũy thừa lên thì dãy này chắc chắn chia hết cho 2, mà chia hết cho 2 thì sẽ là số chẵn, số chẵn + 1 = số lẻ.
=> Dãy trên ko chia hết cho 2
b) Số chia hết cho 5 là số có chữ số tận cùng là số 0 hoặc 5
Ta gọi dãy 22 + 24 + 26 +.......+ 298 là B
B = 22 + 24 + 26 + 28 + 210 + ......... + 298
B = 4 + 16 + 64 + 256 + 1024 +.........
Ta thấy dãy trên có các số hạng có chữ số tận cùng lặp lại 4, 6, 4, 6. Số 298 có chữ số tận cùng là 4.
B = 4 + ..6 + ...4 +...6 +....4 +.........+ .....4
B = ....0 + ....0 + ...0 +...........+ .....4
B = ......4
A = 1 + B
A = 1 + ....4 = .....5
=> A chia hết cho 5
ta có A=
2A=2(1+22+24+26+28+.........+298)
2A= 22+24+26+28+.........+298+2100
A=
ta có 2A-A=A=( 22+24+26+28+.........+298+2100)-(1+22+24+26+28+.........+298)
A=-1
ta thấy là số chẵn
suy ra là số lẻ
suyra 2100 -1 không chia hết cho 2
suy ra A không chia hết cho A
A = 1+2+22+23+...+22008
2A = 2+22+23+24+...+22009
A = 2A - A = 22009 - 1
=> B - A = 22009 - (22009-1) = 22009 - 22009 + 1
=> B - A = 1 (đpcm)
\(A=2^1+2^2+2^3+...+2^{90}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{88}+2^{89}+2^{90}\right)\)
\(=2^1\left(1+2+2^2\right)+...+2^{88}\left(1+2+2^2\right)\)
\(=2^1\cdot7+...+2^{88}\cdot7\)
\(=7\left(2^1+...+2^{88}\right)⋮7\)
Nguyễn Huy Thắng cau dung goi to bang may va tao duoc ko dattebayo?
a)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{59}.3\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{58}.7\)
\(=7\left(2+2^4+2^{58}\right)⋮7\)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{57}.15\)
\(=15\left(2+2^5+2^{57}\right)⋮15\)
b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)
\(=31+5^3.31+...+5^{96}.31\)
\(=31\left(1+5^3+...+5^{96}\right)⋮31\)
Thôi cứ làm bừa đi bạn. Xui lắm thì nhìn tài liệu thôi.
Họ nói: Bước tới phòng thi đủ mánh tà
Toán Văn dưới áo, Lý bên hông
Lom khom giở quẻ tiêu vài chú
Lác đác thu phao lượm mấy tờ
Ai đồng tình và thấy hay thì mik nha
thì A = 1 + 2^1 + ................. + 2^20202021
làm gì cần chứng tỏ nữa!?