\(xy^2\)+\(^{ }\left(-2xy\right)^2\) luôn nhận...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

Do giá trị tuyệt đối \(2x^4+3x^2+1\)và giá trị tuyệt đói của \(-2x^4-x^2+1\)luôn \(\ge\)0 với mọi x ,y 

nên A = \(2x^4+3x^2+1+2x^4+x^2-1\)

\(=4x^4+4x^2=4\left(x^4+x^2\right)\)

Do \(x^4+x^2\ge\)0 với mọi x 

\(\Rightarrow\)\(4\left(x^4+x^2\right)\)\(\ge\)0 với mọi x 

\(\Rightarrow\)\(\ge\)0 với mọi x 

\(\Rightarrow\) A không âm với mọi x (đpcm)

14 tháng 8 2020

a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)=> \(\left(2x-1\right)^2+3\ge3\)

=> \(\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra <=> 2x - 1 = 0 <=>  x = 1/2

Vậy MaxB = 5/3 khi x = 1/2

b) x = -5; y = 3 => P = 2. (-5).(-5 + 3 - 1) + 32 + 1 = -10. (-3) + 9 + 1 = 30 + 10 = 40

P = 2x(x + y - 1) + y2 + 1

P = 2x2 + 2xy - 2x + y2  + 1

P = (x2 + 2xy + y2) + (x2 - 2x + 1)

P = (x + y)2 + (x - 1)2 \(\ge\)0

=> P luôn nhận giá trị không âm với mọi x;y

15 tháng 8 2020

a) Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x-1\right)^2+3\ge3\forall x\)

\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)

hay \(B\le\frac{5}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow2x-1=0\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(maxB=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)

b) - Thay \(x=-5\)và \(y=3\)vào biểu thức ta được:

\(P=2.\left(-5\right).\left(-5+3-1\right)+3^2+1=30+9+1=40\)

- Ta có: \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)=\left(x+y\right)^2+\left(x-1\right)^2\)

Vì \(\left(x+y\right)^2\ge0\forall x,y\)\(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2\ge0\forall x,y\)

hay P luôn nhận giá trị không âm với mọi x, y ( đpcm )

7 tháng 12 2016

sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html

2 tháng 5 2020

\(\left(7x-3x^2y+\frac{1}{2}\right)-N=2xy-3x^2y+\frac{1}{3}x-2\)

\(N=\left(7x-3x^2y+\frac{1}{2}\right)-\left(2xy-3x^2y+\frac{1}{3}x-2\right)\)

\(N=7x-3x^2y+\frac{1}{2}-2xy+3x^2y-\frac{1}{3}x+2\)

\(N=\left(7-\frac{1}{3}\right)x+\left(3x^2y-3x^2y\right)-2xy+\left(\frac{1}{2}+2\right)\)

\(N=\frac{20}{3}x+0-2xy+\frac{5}{2}\)

\(N=\frac{20}{3}x-2xy+\frac{5}{2}\)

Thay x = -1 ; y = 1/2 vào N ta được :

\(N=\frac{20}{3}\left(-1\right)-2\left(-1\right)\cdot\frac{1}{2}+\frac{5}{2}\)

\(N=\frac{-20}{3}-\left(-1\right)+\frac{5}{2}\)

\(N=\frac{-20}{3}+1+\frac{5}{2}\)

\(N=\frac{-19}{6}\)

Vậy giá trị của N = -19/6 khi x = -1 ; y = 1/2

13 tháng 4 2020

Ta có: x4 > 0 với mọi x

và      y6 > 0 với mọi y

=> x4y6 > 0 với mọi x,y hay x4y6 không âm với mọi x,y