Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhận xét: 22+23 + 24 +25 = 60, 60 chia hết cho 5
Khi đó, A= (22+23 + 24 +25) + (26 + 27 + 28 + 29) +.....+ (297 +298 +299+2100)
= (22+23 + 24 +25) + 24 (22+23 + 24 +25)+.......+ 296 (22+23 + 24 +25)
= 1+24 + ....+296. (22+23 + 24 +25) chia hết cho 60 ; 60 chia hết cho 5
=> A chia hết cho 5
Vậy A chia hết cho 5
minh chi lam dc cau a thoi nha nhung hay t i c k cho minh
3 + 32 = 12 chia het cho 4 3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 32 ] + ....+38 . [ 3 + 32 ]
=30 . 12 + 32 . 12 +.....+ 38 . 12 = 12.[30 + 32 +....+ 38 ]
vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4
Ta thấy \(A=2+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(A=2\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...2^{96}\left(1+2+4+8+16\right)\)
\(A=31.\left(2+2^6+...+2^{96}\right)\)
\(A=31.2.\left(1+2^5+...+2^{95}\right)\)
\(A=62.\left(1+2^5+...+2^{95}\right)⋮62\)
Vậy A chia hết cho 62.
chung minh chia het cho3 chia het cho 7 tinh 2^ ra roi chung minh
tao khong co thoi gian nen tao khong lam cu the
cau hỏi tương tự nhé. Quá nhiều người hỏi bà người giải đáp câu này rồi nhé
bai 1:
=>3S + 1.2.3+2.3.3+...+99.100.3
=>1.2.3+2.3(4-1)+3.4(5-2)+...+99.100(101-98)
=>1.2.3+2.3.4-1.2.3+3.4.5+-2.3.4+...+99.100.101-98.100.101
=>99.100.101=999900
=>S=333300
1*2=1/3*(1*2*3-0*1*2)
2*3=1/3(2*3*4-1*2*3)
3*4=1/3(3*4*5-2*3*4)
...
99*100=1/3(99*100*101-98*99*100)
ta đi triệt tiêu, ta thấy trong ngoặc phép tính trên ở trong ngoặc có biểu thức đầu bị biểu thức sau của phép tính dưới triệt tiêu đi nên:
B=99*100*101/3
2101+2102+2103
=23(298+299+2100)
=>(2101+2102+2103) chia hết cho (298+299+2100)
ta có:
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4)
. 2^5 = 32 đồng 7 (mod 25)
=> 2^10 đồng dư 7^2 (mod 25) đồng dư 1(mod 25).
mặt khác:
A= 2^9 +2^99 =2^9(1+2^90)
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 1=0 (mod 25)
=> 2^9 +2^99 đồng dư 0 (mod 25)
BSCNN của 4 và 25 =100
=> A đồng dư 0 (mod 100)
hay A chia hết cho 100.
cách giải của HCT hay rồi đó.
Ta có: 2 = 12
2 = (2 ) .2 = (......24) .8 = ......24 . 12 = .....88
Suy ra 2 + 2 12 + ....88 = .....00.
Số có 2 CSTC là 00 thì sẽ chia hết cho 100. (dpcm)