Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có
\(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)}{b\left(b+c\right)}-\frac{b\left(a+c\right)}{b\left(b+c\right)}\)
\(=\frac{ab+ac-ab-bc}{b\left(b+c\right)}=\frac{ac-bc}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}\)
vì a>b => a-b > 0 => c(a-b) > 0
=> \(\frac{c\left(a-b\right)}{b\left(b+c\right)}>0\)
\(=>\frac{a}{b}-\frac{a+c}{b+c}>0\)
\(=>\frac{a}{b}>\frac{a+c}{b+c}\)
=> đpcm
b) Ta có a+b < a+b+c ; b+c < a+b+c ; c+a < a+b+c
\(=>\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(=>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\) (1)
Lại có
Áp dùng câu a ta có a< a+b ; b< b+c ; c<c+a
=> \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(=>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\) (2)
Từ (1) và (2) => dpcm
TA CÓ: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\left(1\right)\)
TA LUÔN CÓ: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
TỪ (1) VÀ (2) => \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
VẬY TA CÓ ĐPCM.
Cho \(B=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Cm B>1
Ta có \(\frac{a}{a+b+c}< \frac{a}{a+b}\)(vì phân số cùng tử thì mẫu số nào lớn hơn thì phân số đó bé hơn)
CM tương tự ta có\(\frac{b}{a+b+c}< \frac{b}{b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{c+a}\)
Cộng vế theo vế ta có \(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
1 < B
CM B<2
Ta có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)( Vì ta có công thức \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}\)
Cm tương tự như phần trên rồi cộng vế theo vế ta có B<2
1. \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
A nguyên nên \(3⋮n-2\). Vậy \(n-2\in\left(1,-1,3,-3\right)\Rightarrow n\in\left(3,1,5,-1\right)\)thì A nguyên.
2. a,Ta cần CM \(\frac{a}{b}< \frac{a+c}{b+c}\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow ab+ac< ab+bc\Rightarrow ac< bc\)(luôn đúng)
Suy ra điều phải chứng minh.
b, Có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Có:(suy ra từ phần a) \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
BẤM ĐÚNG CHO MÌNH, KO THÌ LẦN SAU KO GIÚP NỮA
Để \(A=\frac{n+1}{n-2}\)có giá trị nguyên => n + 1 chia hết cho n-2
\(=>\left(n-2\right)+3⋮\)\(n-2\)
Mà \(\left(n-2\right)⋮\)\(n-2\)
\(=>3⋮\)\(n-2\)
\(=>n-2\inƯ\left(3\right)=\){1;-1;3;-3}
Ta có bảng :
n-2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
Vậy \(n\in\){3;1;5;-1} để \(A=\frac{n+1}{n-2}\in Z\)
a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
b) b = a - c => b + c = a
\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)
Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.bd< \frac{c}{d}.bd\)
\(\Rightarrow ad< bc\)
\(\Rightarrow2002ad< 2002bc\)
\(\Rightarrow2002ad+cd< 2002bc+cd\)
\(\Rightarrow\left(2002a+c\right).d< \left(2002b+d\right).c\)
Chia cả hai vế cho \(\left(2002b+d\right).d\) ta có :
\(\frac{2002a+c}{2002b+d}< \frac{c}{d}\)
Vậy...
Vì \(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow2002ad< 2002bc\)
\(\Rightarrow2002ad+cd< 2002bc+cd\)
\(\Rightarrow\left(2002a+c\right)d< \left(2002b+d\right)c\)
\(\Rightarrow\frac{2002a+c}{2002b+d}< \frac{c}{d}\)
Mình chắc chắn 100% luôn. Mong các bạn .
1235\(\frac{a}{b+c}\)