\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+.....+\dfrac{1}{\sqrt{2015}}\le2\sqrt{2015}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{5}}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\sqrt{5}-\sqrt{4}+\sqrt{6}-\sqrt{5}\)

\(=\sqrt{6}-\sqrt{2}\)

14 tháng 6 2017

a/ \(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}=1+\dfrac{1}{2.2}+...+\dfrac{1}{n.n}\)

\(< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(=1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(=1+1-\dfrac{1}{n}=2-\dfrac{1}{n}< 2\)

14 tháng 6 2017

Câu b dùng quy nạp đi b

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Bạn xem lời giải tại đây:

Câu hỏi của Lệ Nguyễn Thị Mỹ - Toán lớp 9 | Học trực tuyến

11 tháng 7 2018

b) bạn trục mẫu đi nha dựa vào hằng đẳng thức a^2 -b^2=(a-b)(a+b)

rồi bạn tính nói chung mẫu bằng -1

tính cái trên tử kết quả là 4

c) bạn dựa vào câu b .\(\dfrac{1}{\sqrt{3}}=\dfrac{2}{2\sqrt{3}}>\dfrac{2}{\sqrt{3}+\sqrt{4}}\)

từ đó suy ra B > 2A vậy B>8

22 tháng 7 2018

Câu a : Ta có :

\(\dfrac{1}{1+\sqrt{2}}=\dfrac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}=\dfrac{1-\sqrt{2}}{1-2}=\dfrac{1-\sqrt{2}}{-1}=-1+\sqrt{2}\)

\(\dfrac{1}{\sqrt{2}+\sqrt{3}}=\dfrac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}=\dfrac{\sqrt{2}-\sqrt{3}}{2-3}=\dfrac{\sqrt{2}-\sqrt{3}}{-1}=-\sqrt{2}+\sqrt{3}\)

.....................

\(\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}=\dfrac{\sqrt{n^2-1}-\sqrt{n^2}}{\left(\sqrt{n^2-1}+\sqrt{n^2}\right)\left(\sqrt{n^2-1}-\sqrt{n^2}\right)}=\dfrac{\sqrt{n^2-1}-\sqrt{n^2}}{-1}=-\sqrt{n^2-1}+\sqrt{n^2}\)

Thay vào ta được :

\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...........-\sqrt{n^2-1}+\sqrt{n^2}\)

\(=-1+\sqrt{n^2}\)

AH
Akai Haruma
Giáo viên
23 tháng 7 2018

Câu b:

Đặt biểu thức đã cho là $A$

Ta có:

\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}+\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\right)\)

\(\Leftrightarrow A> \frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\right)\)

\(\Leftrightarrow A> \frac{1}{2}(n-1)\) (áp dụng cách tính toán phần a)

Lại có:

\(A< \frac{1}{2}\left(\frac{1}{0+\sqrt{1}}+\frac{1}{1+\sqrt{2}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}\right)+....+\frac{1}{2}\left(\frac{1}{\sqrt{n^2-3}+\sqrt{n^2-2}}+\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\right)\)

\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{0+\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\right)\)

\(\Leftrightarrow A< \frac{\sqrt{n^2-1}}{2}\) (áp dụng cách tính toán của phần a)

Vậy \(\frac{\sqrt{n^2-1}}{2}> A> \frac{n-1}{2}\) hay \(\sqrt{t(t+1)}> A> t\) (đặt \(n=2t+1\) )

\(\sqrt{t(t+1)}< \sqrt{(t+1)(t+1)}=t+1\)

Do đó: \(t+1> A> t\)

\(\Rightarrow \lfloor{A}\rfloor=t=\frac{n}{2}\)