K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

a) \(B=3+3^3+3^5+...+3^{29}\)

\(\Rightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{25}+3^{27}+3^{29}\right)\)

\(\Rightarrow B=\left(3+3^3+3^5\right)+...+3^{24}.\left(3+3^3+3^5\right)\)

\(\Rightarrow B=273+...+3^{24}.273\)

\(\Rightarrow B=273.\left(1+...+3^{24}\right)⋮273\)

Vậy B là bội của 273.

b) \(A=5+5^2+...+5^7+5^8\)

\(\Rightarrow A=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)

\(\Rightarrow A=\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)

\(\Rightarrow A=30+...+5^6.30\)

\(\Rightarrow A=30.\left(1+...+5^6\right)⋮30\)

Vậy A là bội của 30.

8 tháng 6 2018

A=5+5^2+5^3+...+5^20

=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)

=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)

=30+5^2.30+5^4.30+5^6.30+..+5^18.30

=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)

Vậy A là bội của 30

8 tháng 6 2015

a/

Tổng các chữ số của ababab là :

a+b+a+b+a+b = 3a+3b = 3.[a+b] chia hết cho 3

=> ababab chia hết cho3

b/

S=16^5+2^15=[2^4]^5+2^15=2^20+2^15=2^15. [2^5+1] = 2^15.33 chia hết cho 33

=> đpcm

a) 

ababab=ab0000+ab00+ab

          = abx10000+abx100+abx1

           =abx(10000+100+1)

          =abx10101

ta có 10101 chia hết cho 3

nên abx10101 chia hết cho3

suy ra ababab là bội của 3

 

 

 

26 tháng 7 2015

A = 5 + 52 + 53 + 54 + .......58 

A= (5 + 52) + ( 53+54) + ( 55 + 56) + ( 57 + 58)

A= 1. (5 + 52) + 52.(5 + 52) + 54.(5 + 52) + 56.(5 + 52

A= 1. 30 + 52. 30 + 54. 30 + 56. 30

A= 30 . ( 1 + 5+ 5+ 56)

=> A chia hết cho 30 

=> A là bội của 30 

 

B = 3 + 33 + 3+ 3+ ......... + 329

B= (3 + 33 + 3) + ( 37 + 3+ 311) + .....+ ( 325 + 327 + 329)

B= 1. (3 + 33 + 3) + 36. (3 + 33 + 3)+ .......+ 324. (3 + 33 + 3)

B= 1. 273 +  36. 273 + .......+ 324. 273

B= 273. ( 1+  36+ .......+ 324)

=> B chia hết cho 273

=> B là bội của 273

7 tháng 11 2016

aboi273

k nha

26 tháng 9 2015

7S=72+73+74+...+750

=>7S-S=750-7

=>6S=750-7

=>6S+7=750(lũy thừa của 7)

vậy...

22 tháng 7 2016

Đề bài: Chứng tỏ rằng:

a) Giá trị của biểu thức A=5+52+53+...+59 là bội của 31

Ta có: A=5+52+53+...+59 

            =(5 + 52 + 53) + .... + (56 + 57 + 59)

            = 5.31 + .... + 56.31

            = 31.(5 + .... + 56) là bội của 31

27 tháng 6 2015

\(A=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{25}+3^{27}+3^{29}\right)\)

     \(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)\)

     \(=273+3^6.273+........+3^{24}.273\)

     \(=273\left(1+3^6+......+3^{24}\right)\)chia hết cho 273

3 tháng 11 2017

Ta có:

273=3+3^3+3^5

A=(3+3^3+3^5)+(3^7+3^9+3^11)+...+(3^25+3^27+3^29)

A=1×(3+3^3+3^5)+3^6×(3+3^3+3^5)+...+3^24×(3+3^3+3^5)

A=1×273+3^6×273+...+3^24×273

A=(1+3^6+...+3^24)×273

Suy ra: A chia hết cho 273

26 tháng 6 2015

\(A=3+3^3+...+3^{29}=\left(3+3^3+3^5\right)+...+\left(3^{25}+3^{27}+3^{29}\right)=273+...+3^{25}.273=273.\left(1+...+3^{25}\right)\) chia hết cho 273

Vậy A là bội của 273