
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
Áp dụng BĐT AM-GM:
$ab^2-a^2b=ab(b-a)\leq a(1-a)\leq (\frac{a+1-a}{2})^2=(\frac{1}{2})^2=\frac{1}{4}$
Ta có đpcm
Giá trị này đạt tại $b=1; a=\frac{1}{2}$


1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)
=1
2: \(sin^4x-cos^4x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2\cdot cos^2x\)

1. Tổng các hệ số của đa thức là: 12004.22005=22005
2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.
Nhận thấy x = 1 không là nghiệm của phương trình .
Nhân cả hai vế của pt cho (x−1)≠0 được :
(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)
Vậy pt trên vô nghiệm.
1. Tổng các hệ số của đa thức là:
12014 . 22015 = 22015
2 . Cần chứng minh.
\(x4 + x3 + x2 + x + 1 = 0\)
Vô nghiệm.
Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình.
Nhân cả hai vế của phương trình cho:
\(( x - 1 ) \) \(\ne\) \(0\) được :
\(( x-1). (x4+x3+x2+x+1)=0\)
\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)
Vô lí.
Vậy phương trình trên vô nghiệm.



Gọi tổng trên là A
A = 1/2.2 + 1/3.3 +......+ 1/n.n
A < 1/1.2 + 1/2.3 +.......+ 1/(n-1)n
A < 1 - 1/2 + 1/2 - 1/3 +..........+ 1/n-1 - 1/n
A < 1 - 1/n < 1
=> A < 1 (đpcm)
Cái này không phải toán lớp 9 đâu bn ạ,lớp 6 có rồi !!!
Ta có: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{1963^2}<\frac{1}{1962.1963}\)
Cộng vế theo vế ta được: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1963^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1962.1963}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1962.1963}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1962}-\frac{1}{1963}\)
\(=\)\(1-\frac{1}{1963}<1\)
Do đó :\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1963^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1962.1963}\)\(<1\)