Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
109 + 2
=100...0 + 2 (9 chữ số 0)
=100...02 (8 chữ số 0)
Có tổng các chữ số là:
1+0+0+...+0+2=3 nên chia hết cho 3
=>109 + 2 chia hết cho 3
b)
1010 -1
= 100...0 - 1 (10 chữ số 0)
=99...9 (10 chữ số 9)
Có tổng chữ số là:
9+9+9...+9=90 chia hết cho 9
=>1010 -1 chia hết cho 9
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
*ĐỂ CHỨNG MINH chia hết ta dùng phương pháp tình CHỮ SỐ TẬN CÙNG
Ta thấy chữ số tận cùng của \(43^{43}\)chính là chữ số tận cùng của \(3^{43}\)
Ta có \(3^{43}=3^{40}.3^3=\left(3^4\right)^{10}.3^3=81^{10}.27\)
Vì 81 tận cùng là 1 nên \(81^{10}\)tận cùng bằng 1 suy ra \(81^{10}.27\)tận cùng bằng 7 . Do vậy \(3^{43}\)tận cùng bằng 7
Khi đó \(43^{43}\)tận cùng bằng 7 (1)
Ta thấy chữ số tận cùng của \(17^{17}\)chính là chữ số tận cùng của \(7^{17}\)
Ta có \(7^{17}=7^{16}.7=\left(7^4\right)^4.7=2401^4.7\)
Vì 2401 tận cùng bằng 1 nên \(2401^4\)tận cùng bằng 1 suy ra \(2401^4.7\)tận cùng bằng 7 hay \(7^{17}\)tận cùng bằng 7
Khi đó\(17^{17}\)tận cùng bằng 7 (2)
Từ (1) và (2) suy ra \(43^{43}-17^{17}\)tận cùng bằng 0 hay \(43^{43}-17^{17}\)chia hết cho 10
a, ĐPCM = 10^9+2 chia hết cho 3
b, ĐPCM = 10^10-1 chia hết cho 9
Ta có: 102009 + 17 =1000....00 ( 2009 chữ số 0 ) + 17 = 999....9 ( 2009 chữ số 9 ) + 1 + 17 = 999...9 ( 2009 chữ số 9 ) + 18 chia hết cho 9
102009+17=10000...000(20009 cs)+17 có tổng các chữ số là 9(1+1+7)
=> số đó chia hết cho 9