Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Đặt \(t=\frac{x}{y}+\frac{y}{x}\ge2\Rightarrow t^2=\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\):
\(t^2+2\ge3t\Leftrightarrow\left(t-2\right)\left(t-1\right)\ge0\forall t\ge2\) *đúng*
C2: \(BDT\Leftrightarrow\frac{\left(x-y\right)^2\left(x^2-xy+y^2\right)}{x^2y^2}\ge0\)*đúng*
Hằng đẳng thức ???
Áp dụng BĐT \(x^2+y^2\ge2xy\) ta có:
\(\frac{x^4+y^4}{2}\ge\frac{\left(x^2\right)^2+\left(y^2\right)^2}{2}\ge\frac{2x^2y^2}{2}=x^2y^2\)
Tương tự cho 2 BĐT còn lại cũng có;
\(\frac{y^4+z^4}{2}\ge y^2z^2;\frac{z^4+x^4}{2}\ge x^2z^2\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=\frac{x^4+y^4}{2}+\frac{y^4+z^4}{2}+\frac{z^4+x^4}{2}\ge x^2y^2+y^2z^2+z^2x^2=VP\)
Khi \(x=y=z\)
Áp dụng bđt Cô si cho 2 số không âm, ta có:
\(\hept{\begin{cases}\frac{x^4+y^4}{2}\ge\sqrt{x^4y^4}=x^2y^2\\\frac{y^4+z^4}{2}\ge\sqrt{y^4z^4}=y^2z^2\\\frac{z^4+x^4}{2}\ge\sqrt{z^4x^4}=z^2x^2\end{cases}}\)
\(\Rightarrow\frac{x^4+y^4}{2}+\frac{y^4+z^4}{2}+\frac{z^4+x^4}{2}\ge x^2y^2+y^2z^2+z^2x^2\)
Đề sai rồi kìa:)
Cho x = - 1; y = -1 có: x.y = 1 và x + y = -2.
x.y > x+y mà x+y =-2 <4.
Nhìn lại đề bài nhé!
Vậy hả mình lấy bài trên mạng nên có khi sai. Cảm ơn bạn nhé
Ta có:
\(x^4+y^4\ge x^3y+xy^3\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x^3+y^3\right)\left(x+y\right)\)
\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)
Σ\(\frac{x^4+y^4}{x^3+y^3}\)\(\ge x+y+z=2008\)
Áp dụng BĐT Bunyakovsky,ta có:
\(x^4+y^4\ge\dfrac{\left(x^2+y^2\right)^2}{2}\ge\dfrac{\left[\dfrac{\left(x+y\right)^2}{2}\right]^2}{2}=2\)
Đẳng thức xảy ra khi......