\([x^2-3x+3]=3x-x^2-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi tỉnh Hưng Yên 2015-2016

Bạn lên mạng check đáp án cũng được mà

Học tốt!!!!!!!!!

NV
13 tháng 11 2018

\(x=1+\sqrt[3]{2}+\sqrt[3]{4}\Rightarrow x-1=\sqrt[3]{2}+\sqrt[3]{4}\)

\(x^3-3x^2-3x+1=\left(x-1\right)^3-6x+4\)

Ta có \(\left(x-1\right)^3=\left(\sqrt[3]{2}+\sqrt[3]{4}\right)^3=2+3.\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)+4\)

\(=6+6\left(\sqrt[3]{2}+\sqrt[3]{4}\right)=6+6\left(x-1\right)=6x\)

\(\Rightarrow x^3-3x^2-3x+1=\left(x-1\right)^3-6x+4=6x-6x+4=4\)

Mà 4 là số chính phương nên P là số chính phương

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

a: \(\text{Δ}=\left(-3\right)^2-4\left(1-m^2\right)\)

\(=9-4+4m^2=4m^2+5>0\)

Do đó; Phương trình luôn có hai nghiệm phân biệt

b: \(\text{Δ}=3^2-4\cdot\left(-2\right)\cdot\left(m^2-1\right)\)

\(=9+8m^2-8=8m^2+1>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

c: \(\text{Δ}=\left(m+3\right)^2-4\left(m+1\right)\)

\(=m^2+6m+9-4m-4\)

\(=m^2+2m+5=\left(m+1\right)^2+4>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt