![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A xp=x+x2+x^3+x^4+..................+x^2016
=>xp-p= x^2016-1 ban nhe
B ap dung dau hieu chia het cho 3 la tong chu so chia het cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
BÀI 1:
\(A+B=x^2y+xy^2\)
\(\Leftrightarrow\)\(A+B=xy\left(x+y\right)\)
Vì \(x+y\)\(⋮\)\(13\)
nên \(xy\left(x+y\right)\)\(⋮\)\(13\)
Vậy \(A+B\)\(⋮\)\(13\) nếu \(x+y\)\(⋮\)\(13\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 5:
a) Xét \(\Delta\)ABM và \(\Delta\)ACM
có: AB = AC ( vì tam giác ABC cân tại A)
\(\widehat{B}=\widehat{C}\) ( vì tam giác ABC cân tại A)
MB = MC ( vì M là trung điểm của BC)
Suy ra \(\Delta\)ABM = \(\Delta\)ACM (c.g.c) (1)
b) Từ (1) => \(\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng)
Xét \(\Delta\)AEM và \(\Delta\)AFM vuông tại A, tại F
có: AM là cạnh chung
\(\widehat{A_1}=\widehat{A_2}\) (cmt)
Suy ra \(\Delta\)AEM = \(\Delta\)AFM (cạnh huyền-góc nhọn) (*)
c) Từ (*) => AE = AF (hai cạnh tương ứng)
=> \(\Delta\)AEF cân tại A
Lại có \(\widehat{A_1}=\widehat{A_2}\) (cm câu b)
=> AM là tia phân giác
\(\Delta\) AEF có AM là tia phân giác
=> AM cũng là đường cao
AM \(\perp\) EF
![](https://rs.olm.vn/images/avt/0.png?1311)
BÀI 1: rút gọn biểu thức (x- y +z)2 + (z-y)2 +2(x-y+z).(y-z)
(x- y +z)2 + (z-y)2 +2(x-y+z).(y-z)
=(x- y +z)2 +(z-y)2+(x-y+z)(y-z)+(x-y+z)(y-z)
=(x-y+z)2+(x-y+z)(y-z)+(z-y)2+(x-y+z)(y-z)
=(x-y+z)2+(x-y+z)(y-z)+(z-y)2-(x-y+z)(z-y)
=(x-y+z)(x-y+z+y-z)+(z-y)[z-y-(x-y+z)]
=(x-y+z)x+(z-y)(z-y-x+y-z)
=x2-xy+xz+(z-y)(-x)
=x2-xy+xz-xz+xy
=x2
VP=x2 +xa+xb+ab=x\((x+a)+b(x+a)\)=\((x+a)(x+b)\)=VT \(\RightarrowĐPCM\)
k cho mik
kb nữa nha
thanks
hok tốt