Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số lẻ là 2k+1 và 2h+1
Tích chúng là:
\(\left(2k+1\right)\left(2h+1\right)=4kh+2k+2h+1=2.\left(2kh+k+h\right)+1\) là 1 số lẻ => đpcm
a) và b) mik ko bt làm.
c) Ta có a & b là số chẵn nên a*b = \(\frac{1}{2}a\cdot2.\frac{1}{2}b\cdot2\)= 4(\(\frac{1}{2}a\cdot b\)) suy ra đpcm
d) giống c ( \(2\cdot\frac{1}{2}a\cdot b\))
a) Theo đề : => a + b + c = 1 + 2 + 4 = 7 là số lẻ
b) Không CMR được vì không có nhân hay chia cộng hay trừ j hết
Khi a = 1;b = 2;c = 4 suy ra 1+2+4=7 vậy nó là số lẻ
Gọi 3 số lẻ liên tiếp là:a+1;a+3;a+5
Theo đề ta có
a+1+a+3+a+5
=a+(1+3+5)
=a+9=>chia hết cho 9
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x
∈
∈ N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Một số có lẻ có dạng là 2k+1
=)Tổng hai số lẻ là:
(2k+1).2
Vì 2 là số chẵn =)Mọi số . với 2 đều chẵn
=)đpcm
ta có
số lẽ thứ 1 có dạng 2k+1 , số lẽ liền sau là 2k+3
=>tổng là:2k+1+2k+3=4k+4=4(k+1) chia hết cho 2 => đpcm bạn nhé
Gọi 2 số lẻ là : 2n+1 và 2n+5
Ta có : 2n+1+2n+5=4n+6 chia hết cho 2 suy ra tổng 2 số lẻ là một số chẵn
Gọi 2 số lẻ cần tìm là n , n + 1 ( n là số tự nhiên ) .
=) Nếu n lẻ thì : n + 1 chẵn .
=> n * ( n + 1 ) là số lẻ ( vì số chẵn nhân với số lẻ là số lẻ ) .
Tượng tự : =) Nếu n chẵn thì : n + 1 lẻ => n * ( n + 1 ) lẻ .
Vậy bài toán được chứng minh .