Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12+22+32+...+n2
=1.(2−1)+2.(3−1)+3.(4−1)+...+n[(n+1)−1]
=[1.2+2.3+3.4+...+n(n+1)]-(1+2+3+...+n)
=[n(n+1)(n+2)-0.1.2]/3-n(n+1)/2
=n(n+1)(2n+1)/6
Lời giải 1 :
Xét trường hợp n chẵn :
12 + 22 + 32 + … + n2 = (12 + 32 + 52 + … + (n – 1)2) + (22 + 42 + 62 + … + n2)
= [(n – 1).n.(n + 1) + n.(n + 1).(n + 2)]/6
= n.(n + 1).(n -1 + n + 2)/6 = n.(n + 1).(2n + 1)/6
Tương tự với trường hợp n lẻ, ta có
12 + 22 + 32 + … + n2 = (12 + 32 + 52 + … + n 2) + (22 + 42 + 62 + … + (n – 1)2)
= n(n + 1)(n + 2)/6 + (n – 1)n(n + 1)/6
= n(n + 1)(n + 2 + n – 1)/6
= n(n + 1)( 2n + 1) /6 ( ®pcm)
Lêi gi¶i 2 :
S = 1² + 2² + 3² + 4² +…+ n²
S = 1.1 + 2.2 + 3.3 +4.4 + … + n.n = 1.(2-1) + 2(3-1) + 3(4-1) + 4(5-1) + …n[(n+1)-1]
= 1.2 – 1+ 2.3 – 2 + 3.4 – 3 + 4.5 – 4 +…+ n(n + 1 ) – n
= 1.2 + 2.3 + 3.4 + 4.5 + …+ n( n + 1 ) – ( 1 + 2 + 3 +4 + … + n )
= - = n( n + 1 ). ) = n( n + 1)
Vậy S =
\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)
2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)
3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)
Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))
Bài 1 :
A = 12 + 22 + 32 +....+n2
A = 12 + 2.(1+1) + 3.(2 +1) + 4.( 3 +1) +.....+n(n-1 + 1)
A = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 +.....+ n.(n-1) + n
A = ( 1 + 2 + 3 + 4 +....+n) + ( 1.2 + 2.3 + 3.4 +....+(n-1).n
A = (n+1).{(n-1):n+1)/2 +1/3.[1.2.3 +2.3.3 +.....+(n-1)n.3]
A = (n+1).n/2+1/3.[1.2.3 +2.3.(4-1)+ ...+(n-1).n [(n+1) - (n -2)]
A = (n+1)n/2+1/3.( 1.2.3 + 2.3.4 -1.2.3 +..+ (n-1)n(n+1)- (n-2)(n-1)n)
A =(n+1)n/2 + 1/3.(n-1)n(n+1)
A = n(n+1)[1/2 + 1/3 .(n-1)]
A = n.(n+1) \(\dfrac{3+2n-2}{6}\)
A= n.(n+1)(2n+1)/6
Bài 2 :
a, (x+1) +(x+2) + (x+3)+...+(x+10) = 5070
(x+10 +x+1).{( x+10 - x -1): 1 +1):2 = 5070
(2x + 11)10 : 2 = 5070
( 2x + 11)5 = 5070
2x+ 11 = 5070:5
2x = 1014 - 11
2x = 1003
x = 1003 :2
x = 501,5
b, 1 + 2 + 3 +...+x = 820
( x + 1)[ (x-1):1 +1] : 2 = 820
(x +1).x = 820 x 2
(x +1).x = 1640
(x +1) .x = 40 x 41
x = 40
S=\(^{1^2}\)+\(^{2^2}\)+\(^{3^2}\)+....+ \(^{n^2}\)
S=1+ 2.(1+1) + 3.(2+1) +.....+ n(n-1 +1)
S=1 + 1.2 +2 + 2.3 + 3 +.......+ (n-1).n + n
S= (1 + 2 +3 +....+n) + (1.2 + 2.3 + 3.4 + ......+ (n-1)n )
S= \(\frac{n\left(n+1\right)}{2}\) + \(\frac{n\left(n+1\right)\left(n-1\right)}{3}\)
S= \(\frac{3n\left(n+1\right)+2n\left(n+1\right)\left(n-1\right)}{6}\)
S= \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Làm sao mà (1.2+2.3+...+(n-1).n=n(n+1)(n-1)/3 được vậy bạn? Cái n(n+1)/2 thì mình hiểu rồi nhưng mà cái thứ hai là sao thì giảng rõ giùm mình với cảm ơn rất nhiều.