K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

Đặt \(A=\frac{a}{a+b}\)

Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)

Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản

\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản

\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản

21 tháng 2 2021

Đặt \(A=\frac{a}{a+b}\)

Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)

Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản

\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản

\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản

21 tháng 2 2021
Có em cứ ghi vào vở là : tạo ko biết
21 tháng 2 2021

Đặt \(A=\frac{a}{a+b}\)

Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)

Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản

\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản

\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản

21 tháng 2 2021

Đặt \(A=\frac{a}{a+b}\)

Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)

Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản

\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản

\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản

21 tháng 2 2021

Đặt \(A=\frac{a}{a+b}\)

Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)

Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản

\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản

\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản

21 tháng 2 2021

Đặt \(A=\frac{a}{a+b}\)

Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)

Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản

\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản

\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản

21 tháng 2 2021

Đặt \(A=\frac{a}{a+b}\)

Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)

Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản

\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản

\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản

21 tháng 2 2021

Nếu \(\frac{a}{b}\)là phân số tối giản thì \(\frac{a}{a+b}\)là phân số tối giản 

CM: Đặt \(A=\frac{a}{a+b}\)

Ta có: \(\frac{1}{A}=\frac{a+b}{a}\)

   \(\Leftrightarrow\frac{1}{A}=1+\frac{b}{a}\)

Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản 

\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản

21 tháng 2 2021

Đặt \(A=\frac{a}{a+b}\)

Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)

Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản

\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản

\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản

28 tháng 12 2023

Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.

Ta có: 10p + 1 - p  = 9p + 1 

      Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k

          17p + 1 = 8p + 9p + 1   = 8p + 2k = 2.(4p + k) ⋮ 2

        ⇒ 17p + 1 là hợp số (đpcm)

      

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Câu 1: 

Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.

Nếu $p=3k+2$ thì:

$10p+1=10(3k+2)+1=30k+21\vdots 3$

Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)

$\Rightarrow p$ có dạng $3k+1$.

Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
 (đpcm)

1 tháng 3 2017

I DON'T KNOW