\(\frac{x^3+3}{\sqrt{x^2+2}}\ge2\) với x thuộc...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

Thay giá trị x = y = z vô thì thấy VT > 2 nên nghi ngờ đề sai. B xem lại

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
21 tháng 9 2020

Ta có: \(x^4+16x^2+32=0\Leftrightarrow\left(x^2-8\right)^2-32=0\left(1\right)\)

Với \(x=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\Leftrightarrow x=\sqrt{3}\sqrt{2-\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)

\(\Rightarrow x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}\)

Thay x vào vế phải của (1) ta được:

\(\left(x^2-8\right)^2-32=\left(8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}-8\right)^2-32\)

\(=4\left(2+\sqrt{3}\right)+4\sqrt{3}+12\left(2-\sqrt{3}\right)-32\)

\(=8+4\sqrt{3}+8\sqrt{3}+24-12\sqrt{3}-32=0\)= vế phải

Vậy \(x-\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)là 1 nghiệm của phương trình đã cho(đpcm)

31 tháng 8 2020

Sử dụng bất đẳng thức AM - GM ta dễ thấy:

\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)

\(\ge2\sqrt{\left(a-1+2\sqrt{a-2}\right)\left(a-1-2\sqrt{a-2}\right)}\)

\(=2\sqrt{\left(a-1\right)^2-4\left(a-2\right)}=2\sqrt{a^2-6a+9}=2\sqrt{\left(a-3\right)^2}\ge2\)( vì a khác 3 ) 

Hoặc cách khác như thế này:

\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)

\(=\sqrt{\left[a-2+2\sqrt{a+2}+1\right]}+\sqrt{\left[a-2-2\sqrt{a-2}+1\right]}\)

\(=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)

\(=\left|\sqrt{a-2}+1\right|+\left|\sqrt{a-2}-1\right|\)

\(=\left|\sqrt{a-2}+1\right|+\left|1-\sqrt{a-2}\right|\ge\left|\sqrt{a-2}+1+1-\sqrt{a-2}\right|=2\)

Đẳng thức tự tìm nha

15 tháng 4 2020

\(a+b\ge2\sqrt{ab}\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( đúng )

Áp dụng Bunhiacopski ta có:

\(S^2=\left(\sqrt{x-2}+\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-2+y-3\right)=2\left(x+y-5\right)=2\)

Dấu "=" bạn xét nốt

6 tháng 8 2019

Sai đề à? x = y = 1 thì VT  > 1/4

6 tháng 8 2019

Mình cũng nghĩ là đề sai,... do cái này là tài liệu trên mạng.

3 tháng 10 2019

\(D=\frac{2}{\sqrt{xy}}:\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}\right)^2-\frac{x+y}{x-2\sqrt{xy}+y}\left(ĐKXĐ:x\ge0,y\ge0,x\ne y\right)\)

\(\Leftrightarrow D=\frac{2}{\sqrt{xy}}:\left(\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}\right)^2-\frac{x+y}{\sqrt{x}}\)

\(\Leftrightarrow D=\frac{2}{\sqrt{xy}}.\frac{xy}{\left(\sqrt{x}-\sqrt{y}\right)^2}-\frac{x+y}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)

\(\Leftrightarrow D=\frac{2\sqrt{xy}-x-y}{\left(\sqrt{x}-\sqrt{y}\right)^2}=\frac{-\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)^2}=-1\)

=> ko phụ thuộc x