\(\frac{A+a+B+b}{A+a+B+b+c+d}+\frac{B+b+C+c}{B+b+C+c+a+d}>\frac{C+c+A+a}{C+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

Bài toán phụ : cho 0<x<y; z>0

CMR: \(\frac{x+z}{y+z}>\frac{x}{y}\)

giải: \(0< x< y;z>0\Rightarrow zy>zx\Rightarrow zx+zy>xz+xy\)

                                          \(\Rightarrow y\left(x+z\right)>x\left(y+z\right)\Rightarrow\frac{x+z}{y+z}\Rightarrow\frac{x+z}{y+z}>\frac{x}{y}\)

Áp dụng bài toán phụ ta có:

                                    \(\frac{A+a+B+b}{A+a+B+b+c+d}>\frac{A+a}{A+a+c+d}\)

Tương tự : \(\frac{B+b+C+c}{B+b+C+c+a+d}>\frac{C+c}{C+c+A+a+b+d}\)

Mà: 

\(\frac{A+a}{A+a+c+d}+\frac{C+c}{C+c+a+d}>\frac{A+a}{C+c+A+a+b+d}+\frac{C+c}{C+c+A+a+b+d}\)

Do đó:

\(\frac{A+a+B+b}{A+a+B+b+c+d}+\frac{B+b+C+c}{B+b+C+c+a+d}>\frac{C+c+A+a}{C+c+A+a+b+d}\)

1 tháng 9 2016

 đặt   P=a/(b+c)+b/(c+d)+c/(d+a)+d/(a+b)

        Q=b/(b+c)+c/(c+d)+d/(d+a)+a/(a+b)

        R=c/(b+c)+d/(c+d)+a/(d+a)+b/(a+b)

        thì Q+R=4

        Ta có: P+Q=(a+b)/(b+c)+(b+c)/(c+d)+(c+d)/(d+a)+(d+a)/(a+b)≥4

          => P+R≥4

         Cộng 2 bđt trên ta được: 2P+Q+R≥8 hay P≥2

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

30 tháng 8 2018

1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

          \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)

          \(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)

         \(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)

Cộng vế theo vế ta được :

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)             ( đpcm )

2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :

\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)

Dấu "=" xảy ra <=> b - 1 = 1    <=> b = 2

\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)

Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2

Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)

Dấu "=" xảy ra <=> a = b = 2

15 tháng 6 2020

@Akai Haruma

19 tháng 2 2020

+ \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\) (1)

+ Ta c/m : Nếu \(\frac{m}{n}< 1\) thì \(\frac{m}{n}< \frac{m+x}{n+x}\)

+ Ta có : \(\frac{m}{n}< 1\Leftrightarrow m< n\Leftrightarrow mx< nx\) ( m,n,x > 0 )

\(\Leftrightarrow mn+mx< mn+nx\Leftrightarrow m\left(n+x\right)< n\left(m+x\right)\) \(\Leftrightarrow\frac{m}{n}< \frac{m+x}{n+x}\)

Áp dụng kết quả trên :

\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{a+b}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+d}{a+b+c+d}\) \(=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\) (2)

+ Từ (1) và (2) => đpcm

28 tháng 12 2015

 

\(VT^2\ge\left(1+1+1+1\right)\left(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\right)\ge4.1=4\)

=> VT >/ 2

Dễ CM được \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\ge1\)

28 tháng 12 2015

\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\)

\(=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)

\(\ge\frac{a}{\frac{a+b+c+d}{2}}+\frac{b}{\frac{b+c+d+a}{2}}+\frac{c}{\frac{a+b+c+d}{2}}+\frac{d}{\frac{a+b+c+d}{2}}=2\)

Dấu '' = '' xảy ra khi a = b + c+ d 

                              b = c+d+a 

                            c = b+a+d

                             d = a+b+c 

Hình như ko có a ; b; c ;d 

14 tháng 8 2019

Áp dụng bất đẳng thức Cô-si :

\(\frac{a}{b+c}+\frac{b+c}{4a}\ge2\sqrt{\frac{a\left(b+c\right)}{4a\left(b+c\right)}}=1\)

Tương tự với các phân thức còn lại, sau đó cộng theo vế ta được :

\(VT+\frac{b+c}{4a}+\frac{c+d}{4b}+\frac{d+e}{4c}+\frac{e+a}{4d}+\frac{a+b}{4e}\ge5\)

\(\Leftrightarrow VT\ge5-\frac{1}{4}\left(\frac{b+c}{a}+\frac{c+d}{b}+\frac{d+e}{c}+\frac{e+a}{d}+\frac{a+b}{e}\right)\)

\(=5-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}+\frac{e}{c}+\frac{e}{d}+\frac{a}{d}+\frac{a}{e}+\frac{b}{e}\right)\)

\(\ge5-\frac{1}{4}\cdot10\sqrt[10]{\frac{b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e\cdot a\cdot a\cdot b}{a\cdot a\cdot b\cdot b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e}}=5-\frac{1}{4}\cdot10=\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=e=1\)

26 tháng 6 2016

3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)

vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)

tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)

tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)

cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)

giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)

<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)

<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)

<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)

(đúng với mọi a,b,c >0) (2)

(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)