Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
Áp dụng bất đẳng thức cô-si, ta có:
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2.\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\)
=>\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2.\sqrt{\frac{a^2}{4}}\)
=>\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2.\frac{a}{2}\)
=>\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge a\)
Tương tự, ta có:
\(\frac{b^2}{c+a}+\frac{c+a}{4}\ge b\)
\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
=>\(\frac{a^2}{b+c}+\frac{b+c}{4}+\frac{b^2}{c+a}+\frac{c+a}{4}+\frac{c^2}{a+b}+\frac{a+b}{4}\ge a+b+c\)
=>\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\left(\frac{b+c}{4}+\frac{c+a}{4}+\frac{a+b}{4}\right)\ge a+b+c\)
=>\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{b+c+c+a+a+b}{4}\ge a+b+c\)
=>\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a+b+c}{2}\ge\frac{2.\left(a+b+c\right)}{2}\)
=>\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{2.\left(a+b+c\right)}{2}-\frac{a+b+c}{2}\)
=>\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
Dấu "=" xảy ra khi: \(\frac{a^2}{b+c}=\frac{b+c}{4}=>4.a^2=\left(b+c\right)^2=>2a=b+c=>3a=a+b+c\)
\(\frac{b^2}{c+a}=\frac{c+a}{4}=>4.b^2=\left(c+a\right)^2=>2b=c+a=>3b=a+b+c\)
\(\frac{c^2}{a+b}=\frac{a+b}{4}=>4.c^2=\left(a+b\right)^2=>2c=a+b=>3c=a+b+c\)
=>3a=3b=3c=a+b+c
=>a=b=c
=>ĐPCM
Ta có:\(a\ge b\ge c\ge0\)
\(\Rightarrow a^2\ge b^2\ge c^2\ge0\)
\(\Rightarrow\hept{\begin{cases}a^2-b^2\ge0\\b^2-c^2\ge0\\c^2-a^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}c^3\left(a^2-b^2\right)\ge0\\a^3\left(b^2-c^2\right)\ge0\\b^3\left(c^2-a^2\right)\ge0\end{cases}}}\)
\(\Rightarrow c^3\left(a^2-b^2\right)+a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)\ge0\)
\(\Rightarrow a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)\ge0\)
1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)
nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x
2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)
mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha
Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai
Câu 2 sai đề. chứng minh như sau;
Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)
\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\)
Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)
\(\Leftrightarrow0,25>0,5\) => vô lí
\(BDT\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)
\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{\left(b-a\right)+\left(a-c\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(a-b\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+\frac{1}{2}\left(a-c\right)\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\frac{\left(c-a\right)\left(a-b\right)}{2\left(a+b\right)\left(b+c\right)}+\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)}\left(-\frac{1}{a+b}+\frac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)\left(b-c\right)}{2\left(a+b\right)\left(a+c\right)\left(b+c\right)}\ge0\)(luôn đúng \(\forall a\ge b\ge c>0\))
Vậy BĐT đã được chứng minh
a. Ta chứng minh với \(a,b\ge0\) thì:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) là bất đẳng thức đúng
Dấu "=" khi a = b
Áp dụng:
\(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
Dấu = khi a = b
Ta có: \(VT=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\frac{\left(a+b+c\right)^2}{ab+ac+ab+bc+ac+bc}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Lại có BĐT quen thuộc \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\) (ĐPCM)
Đẳng thức xảy ra khi \(a=b=c\)
cảm ơn