Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 7 + 72 + 73 + .... + 730
A = (7 + 72) + (73 + 74) + .... + (729 + 730)
A = 7(1 + 7) + 73.(1 + 7) + .... + 729.(1 + 7)
A = 7.8 + 73.8 + .... + 729.8
A = 8.(7 + 73 + ..... + 729) chia hết cho 8
A = (7 + 72 + 73) + (74 + 75 + 76) + .... + (728 + 729 + 730)
A = 7.(1 + 7 + 49) + 74.(1 + 7 + 49) + .... + 728.(1 + 7 + 49)
A = 7.57 + 74.57 + ..... 728.57
A = 57.(7 + 74 + .... + 728)
a) 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 chia hết cho 55
b) 817 - 279 + 329 = (34)7 - (33)9 + 329 = 328 - 327 + 329 = 326(32 - 3 + 33) = 326.33 chia hết cho 33
c) 812 - 233 - 230 = (23)12 - 233 - 230 = 236 - 233 - 230 = 230(26 - 23 - 1) = 230.55 chia hết cho 55
d) 109 + 108 + 107 = 107(102 + 10 + 1) = 107.111 mà 107 chia hết cho 5(vì tận cùng là 0) => 109 + 108 + 107 chia hết : 111.5 = 555
e) 911 - 910 - 99 = 98(93 - 92 - 9) = 98.639 chia hết cho 639 =>\(\frac{9^{11}-9^{10}-9^9}{639}\in N\)
f) 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324(34 - 33 - 32) = 324.45 chia hết cho 45.
a) 76+75-74
= 74(72+7-1)
= 74 . 55 chia hết cho 55 (đpcm)
b) Thôi tôi đi ngủ đây nhớ k cho tôi
a,7^4 x (7^2 + 7 - 1 ) = 7^4 x ( 49 + 7 - 1 ) = 7^4 x 55 chia het cho 55
b, hình như bạn ghi đè sai thì phải , nếu đúng thì chia hết cho 11= (3^4)^7 - (3^3)^9 + 3^29 = 3^28 - 3^27 + 3^29 = 3^27 x ( 3 - 1 + 3^2 ) = 3^27 x( 3 -1 + 9 )= 3^27 x 11
a/ \(2^{n+3}-32=2^3.2^n-32=8\left(2^4-4\right)⋮8\)
b/ \(\left(3^8+3^7\right)-\left(2^8+2^7\right)=3^7\left(3+1\right)-2^7\left(2+1\right)=\)
\(=2^2.3^7-2^7.3=2^2.3\left(3^6-2^5\right)=12\left(3^6-2^5\right)⋮12\)
a )
Ta có :
87 - 218 = ( 23 )7 - 218= 221 - 218 = 218 ( 23 - 1 ) = 218 . 7 = 217 .2.7 = 217 . 14 ( chia hết cho 14 )
Vậy 87-218chia hết cho 14
b )
Ta có 106 - 57 = 26 . 56 - 57
= 56 . (26 - 5)
= 56 . (64 - 5)
= 56 . 59 chia hết cho 59
Vậy 106 - 57 chia hết cho 59
c )
Quá easy bạn à!
a) Ta có: \(A=7+7^2+7^3+...+7^{30}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{29}+7^{30}\right)\)
Do các tổng trong ngoặc trên đều chia hết cho 8 nên A chia hết cho 8 (1)
b) \(A=7+7^2+7^3+...+7^{30}\)
\(=\left(7+7^2+7^3\right)+\left(7^3+7^4+7^5\right)+...+\left(7^{28}+7^{29}+7^{30}\right)\)
Do các tổng trong ngoặc đều chia hết cho 57 nên A chia hết cho 57 (2)
Từ (1) và (2) ta có đpcm