Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Dấu " = " xảy ra <=> a=b=c=1
Có: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\Leftrightarrow a+b+c\ge3\)( bạn tự c/m nhé )
Dấu " = " xảy ra <=> a=b=c
Áp dụng BĐT Cauchy-schwarz ta có:
\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}\ge\frac{\left(a^2+b^2+c^2\right)^2}{4\left(a+b+c\right)}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{4\left(a+b+c\right)}=\frac{\left(a+b+c\right)^3}{36}\ge\frac{27}{36}=\frac{3}{4}\)
Dấu " = " xảy ra <=> a=b=c=1 ( bạn tự giải rõ ra nhé )
Áp dụng BĐT Bunhiacopxki ta có :
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Ta có : \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\Leftrightarrow a+b+c\ge3\) ( tự chứng minh ạ )
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Áp dụng BĐT Cachy Schwarz ta có :
\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}\ge\frac{\left(a^2+b^2+c^2\right)^2}{4\left(a+b+c\right)}\) \(\ge\frac{\left[\frac{\left(a+b+c\right)}{3}\right]^2}{4\left(a+b+c\right)}=\frac{\left(a+b+c\right)^3}{36}\)
\(\ge\frac{27}{36}=\frac{3}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\) ( bạn tự giải rõ ạ )
Áp dụng BĐT Cauchy cho 2 số dương ta được :
\(\dfrac{a^2}{b+3c}+\dfrac{b+3c}{16}\ge2\sqrt{\dfrac{a^2}{b+3c}\times\dfrac{b+3c}{16}}=\dfrac{2a}{4}\)
Suy ra \(\dfrac{a^2}{b+3c}\ge\dfrac{2a}{4}-\dfrac{b+3c}{16}\)
Cmtt ta cũng được :
\(\dfrac{b^2}{c+3a}\ge\dfrac{2b}{4}-\dfrac{c+3a}{16}\) \(\dfrac{c^2}{a+3b}\ge\dfrac{2c}{4}-\dfrac{a+3b}{16}\)
Khi đó :
\(\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{2a}{4}-\dfrac{b+3c}{16}+\dfrac{2b}{4}-\dfrac{c+3a}{16}+\dfrac{2c}{4}-\dfrac{a+3b}{16}\)
mà \(\dfrac{2a}{4}-\dfrac{b+3c}{16}+\dfrac{2b}{4}-\dfrac{c+3a}{16}+\dfrac{2c}{4}-\dfrac{a+3b}{16}=\dfrac{a+b+c}{4}\)
Vậy \(\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{a+b+c}{4}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\dfrac{a+b+c}{4}\) (đpcm)
Dấu " = " xảy ra khi \(a=b=c\)
\(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)
\(b^3+b^3+c^3\ge3\sqrt[3]{b^6c^3}=3b^2c\)
\(c^3+c^3+a^3\ge3\sqrt[3]{c^6a^3}=3c^2a\)
Cộng vế theo vế có ngay điều phải chứng minh
a, \(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)\)
\(=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)
Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\a^2+ab+b^2=\left(a+\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall a;b\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\Leftrightarrow a^4+b^4\ge a^3b+ab^3\)
Dấu "=" xảy ra khi a = b
b, \(a^3-3a^2+4a+1=a\left(a^2-4a+4\right)+a^2+1=a\left(a-2\right)^2+a^2+1>0\left(\forall a>0\right)\)
c, \(a^4+b^2+2-4ab=\left(a^4-2a^2b^2+b^4\right)+\left(2a^2b^2-4ab+2\right)\)
\(=\left(a^2-b^2\right)^2+2\left(ab-1\right)^2\ge0\)
\(\Rightarrow a^4+b^4+2\ge4ab\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=1\\a=b=-1\end{cases}}\)
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
\(a^4+b^4\ge a^3b+b^3a\left(1\right)\)
Nếu a,b=0 thì (1) luôn đúng
\(a^4\left(1+t^4\right)\ge a^4\left(t+t^3\right)\Leftrightarrow t^4-t^3-t+1\ge0\)
Xét hàm số \(f\left(t\right)=t^4-t^3-t+1\)có:
\(f'\left(t\right)=4t^3-3t^2-1=\left(t-1\right)\left(4t^2+t+1\right)\Rightarrow f'\left(t\right)=0\Leftrightarrow t=1\)
Lập bảng biến thiên từ đó suy ra \(f\left(t\right)\ge f\left(0\right)=0\left(đpcm\right)\)
https://imgur.com/a/SJoKyTk
Bạn tham khảo cách mình nhế. Làm phiền bạn gõ link nha !
Bạn Hà dùng hàm số 12 trâu vl =)))))