![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(9^{n+2}+3^{n+2}-9^n+3^n\)
\(=9^n.9^2+3^n.3^2-9^n+3^2\)
\(=9^n\left(9^2-1\right)+3^n\left(3^2+1\right)\)
\(=9^n\left(80\right)+3^n\left(10\right)\)
\(\text{Do 80 chia hết cho 10 }\Rightarrow9^n.80\text{chia hết cho 10}\)
\(\text{Do 10 chia hết cho 10}\Rightarrow3^n.10\text{chia hết cho 10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(3^{n+2}-2^{n-2}+3^n-2^n=3^n\left(3^2+1\right)-2^{n-2}\left(1+2^2\right)=3^n.10+2^{n-3}.10⋮10̸\)
mọi số tự nhiên n > 2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(8^{n-\left(-2\right)}-5^{n-\left(-2\right)}+8^n-5^n\)
\(=8^{n+2}-5^{n+2}+8^n-5^n\)
\(=8^n.64-5^n\cdot25+8^n-5^n\)
\(=\left(8^n\cdot64+8^n\right)-\left(5^n\cdot25+5^n\right)\)
\(=8^n\cdot65-5^n\cdot26\)
Mà \(130⋮65\); \(130⋮26\)
\(\Rightarrow8^{n-\left(-2\right)}-5^{n-\left(-2\right)}+8^n-5^n⋮130\)
Mà \(130⋮65\Rightarrow\)số đó cũng chia hết cho 65
![](https://rs.olm.vn/images/avt/0.png?1311)
p xem lại đề đc k
thử với n=1 ta được:
VT=3^3-2^3+3+2=27-8+3+2=24 không chia hết cho 10
a) Ta có \(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\forall n\inℕ^∗\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 : Giải
* Nếu n chia 5 dư 1 thì n2 chia 5 dư 1
\(\Rightarrow\left(n^2+4\right)⋮5\)
* Nếu n chia 5 dư 4 thì n2 chia 5 dư 4
\(\Rightarrow\left(n^2+1\right)⋮5\)
\(\Rightarrow\left(n^2+1\right)\left(n^2+4\right)⋮5\)
Từ đó suy ra \(n\left(n^2+1\right)\left(n^2+4\right)⋮5\)( đpcm )
Câu 2 : Giải
Ta có : \(n^2+4n^2+5=5n^2+5=5\left(n^2+1\right)\)
\(\Rightarrow n^2+4n^2+5=\overline{...5}\)
\(\Rightarrow\)\(\Rightarrow n^2+4n^2+5\) không chia hết cho 8 ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
3x . 3 + 3x . 32 + 3x . 33 +....+ 3x . 3100
3x (3 + 32 + 33 + 34) + 3x + 4 (3 + 32 + 33 + 34) + ....+ 3x + 96 (3 + 32 + 33 + 34)
(3x + 3x + 4 + ...+ 3x + 96) . (3 + 32 + 33 + 34)
(3x + 3x + 4 + ...+ 3x + 96) . 120 chia hết cho 120 (đpcm)
Với \(n=1\Rightarrow A=3\) không chia hết cho 5
=> ĐỀ SAI
Ta có : A = n2 + n + 1
= n . n + n + 1
= n . ( n + 1 ) + 1
Ta thấy n . ( n + 1 ) là 2 stn liên tiếp nhân với nhau
Mà n.( n + 1 ) có cs tận cùng là : 0 ; 2 hoặc 6
=> n . ( n + 1 ) + 1 có cs tận cùng là : 1; 3 hoặc 7
=> A không chia hết cho 5
Đề bài có đúng ko ?