Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Gọi 5 số tự nhiên liên tiếp là : a;a+1;a+2;a+3;a+4
Tổng bằng : a+a+1+a+2+a+3+a+4=5a+10 Vậy số này chia chỉ chia hết cho 5
Đề bài bị sai :
b) Gọi 5 số lẻ liên tiếp là : 2k+1;2k+3;2k+5;2k+7;2k+9
Tổng là : 2k+1+2k+3+2k+5+2k+7+2k+9=10k +25 =10k+20+5 =10(k+2)+5
10(k+2) chia hết cho 10 ; suy ra 10(k+2)+5 chia 10 dư 5
3) a) abcabc=abc.1000+abc=abc.1001
Mà 1001=7.11.13
Đấy thế là xong
b) abcdeg =
Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
...
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Vậy A<\(\frac{3}{4}\)
A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)
a)N = abcabc = abc x 1001 = abc x (7 x 11 x 13)
Suy ra: abcabc chia hết cho 7, cho 11 và cho 13
b) tương tụ
a) \(abcabc=abc\cdot1000+abc=abc\cdot1001=abc\cdot7\cdot11\cdot13\). Suy ra abcabc chia hết cho 7,11,13
b ) \(abcdeg=deg\cdot2\cdot1000+deg=deg\cdot2001\)
\(deg\cdot2001=deg\cdot23\cdot87=deg\cdot29\cdot69\). Suy ra nếu abc = 2deg thì abcdeg chia hết cho 23 và 29
Xét : \(B=\frac{196+197}{197+198}=\frac{196}{197+198}+\frac{197}{197+198}\)
Ta có : \(\frac{196}{197}>\frac{196}{197+198}\) và \(\frac{197}{198}>\frac{197}{197+198}\)
Hay A>B
Suy ra : \(\frac{196}{197}+\frac{197}{198}>\frac{196+197}{197+198}\)
a) Vì số chẵn là số chia hết cho 2 nên ta có:
\(\overline{abc}=\overline{ab}+\overline{bc}+\overline{ca}+\overline{ac}+\overline{cb}+\overline{ba}\)
\(=10a+b+10b+c+10c+a+10a+c+10c+b+10b+a\)
\(=\left(10a+10a+a+a\right)+\left(10b+10b+b+b\right)+\left(10c+10c+c+c\right)\)
\(=22a+22b+22c\)
\(=22\left(a+b+c\right)\)
Vì \(22.\left(a+b+c\right)⋮2\) nên \(\overline{abc}\) là số chẵn ( đpcm )
Vì \(22.\left(a+b+c\right)⋮11\) nên \(\overline{abc}⋮11\) ( đpcm )
a) abcdeg=ab.10000+cd.100+eg=9999.ab+99.cd+(ab+cd+ef)
ta co (ab+cd+ef) chia het cho 11 ; 9999.ab chia het cho 11 ; 99.cd chia het cho 11
=>abcdeg chia het cho 11
b)ta co 72=8.9
ta thay 10^28 chia het cho 8
ma 8 chia het cho 8
=> 10^28+8 chia het cho 8
tong cac chu so cua so 10^28+8=1+0+0+...+0+8=9 chia het cho 9
=>10^28+8 chia het cho 72
nho k nha
1/2^2>1/2.3;1/3^2>1/3.4;......;1/9^2>1/9.10
suy ra S > 1/2.3+1/3.4+......+1/9.10
S> 1/2-1/3+1/3-1/4 +.....+1/9-1/10
S> 1/2-1/10=2/5
Vay 2/5 < S
Vậy còn S < \(\frac{8}{9}\)thì sao, bạn quên chưa chứng minh rồi
B=ax.by⇒B2=a2x.b2yB=ax.by⇒B2=a2x.b2y ; B3=a3x.a3yB3=a3x.a3y
⇒⇒ số ước số tự nhiên của B2B2 là (2x+1)(2y+1)(2x+1)(2y+1)
⇒(2x+1)(2y+1)=15⇒(2x+1)(2y+1)=15
⇒⇒{2x+1=32y+1=5{2x+1=32y+1=5 ⇒{x=1y=2⇒{x=1y=2 hoặc {2x+1=52y+1=3{2x+1=52y+1=3 ⇒{x=2y=1⇒{x=2y=1
⇒⇒ số ước của B3B3 là (3x+1)(3y+1)=4.7=28
a) abcabc = abc000 + abc
= 1000abc + abc
= 1001abc
Do 1001 \(⋮\) 7; 11; 13 => 1001abc \(⋮\) 7; 11; 13
Vậy abcabc \(⋮\) 7; 11; 13
b) abcdeg = abc000 + deg
= 1000abc + deg
= 1000 . 2deg + deg
= 2000deg + deg
= 2001deg
Do 2001 \(⋮\) 23 => abcdeg \(⋮\) 23
Chúc học tốt nha
Cảm ơn bạn!