Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\dfrac{2^{35}.45^{25}.13^{22}.35^{16}}{9^{26}.65^{22}.28^{17}.25^9}\)
\(=\dfrac{2^{35}.9^{25}.5^{25}.13^{22}.7^{16}.5^{16}}{9^{26}.13^{22}.5^{22}.2^{17}.2^{17}.7^{17}.5^9.5^9}\)
Bạn rút gọn sẽ còn lại:
\(=\dfrac{2.5}{7.9}=\dfrac{10}{63}\)
Câu 4:
\(K=\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6x^2y-y^3\)\(K=\left(x^2y\right)^2-2.x^2y.3+3^2-\left[\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y^2-y^3\right]+6xy^3-x^4y^2+8x^3-6x^2y-y^3\)\(K=x^4y^2-6x^2y+9-8x^3+12x^2y-6xy^2+y^3+6xy^2-x^4y^2+8x^3-6x^2y-y^3\)\(K=9\)
Câu 1:
\(\left(x^2+2x+4\right)\left(x-2\right)=x^3-8\)
Câu 3:
a) \(\dfrac{7x-4}{x-1}-\dfrac{5x-2}{x-1}=\dfrac{7x-4-5x+2}{x-1}=\dfrac{2\left(x-1\right)}{x-1}=2\)
b) \(\dfrac{10x}{27y^2}:\dfrac{5x^3}{9xy}=\dfrac{10x}{27y^2}\cdot\dfrac{9xy}{5x^3}=\dfrac{90x^2y}{135x^3y^2}=\dfrac{2}{3xy}\)
Câu 4:
a) \(x^2\left(x-3\right)-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
b) \(a^2-2ab+b^2-9\)
\(=\left(a-b\right)^2-3^2\)
\(=\left(a-b-3\right)\left(a-b+3\right)\)
c) \(6x^3+18x^2y+18xy^2+6y^3\)
\(=6\left(x^3+3x^2y+3xy^2+y^3\right)\)
\(=6\left(x+y\right)^3\)
Bài 5:
a) Phân thức P có giá trị xác định khi
\(x^2-3x\ne0\Rightarrow x\left(x-3\right)\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x-3\ne0\Rightarrow x\ne3\end{matrix}\right.\)
b) \(P=\dfrac{4x-12}{x^2-3x}=\dfrac{4\left(x-3\right)}{x\left(x-3\right)}=\dfrac{4}{x}\)
Với \(x\ne0,x\ne3\) thì P = 4
\(\Rightarrow\dfrac{4}{x}=4\Rightarrow x=16\)
Câu 1:Tính
\(\left(x^2+2x+4\right).\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-8\)
Câu 2:tính
a,\(\dfrac{7x-4}{x-1}-\dfrac{5x-2}{x-1}=\dfrac{7x-4-5x+2}{x-1}=\dfrac{2x-2}{x-1}=\dfrac{2\left(x-1\right)}{x-1}=2\)
\(b,\dfrac{10x}{27y^2}:\dfrac{5x^3}{9xy}=\dfrac{10x}{27y^2}.\dfrac{9xy}{5x^3}=\dfrac{2}{3xy}\)
Câu 3:Phân tích các đa thức sau thành nhân tử
\(a,x^2\left(x-3\right)-4x+12\)
\(=x^2\left(x-3\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(b,a^2-2ab+b^2-9\)
\(=\left(a^2-2ab+b^2\right)-3^2\)
\(=\left(a-b\right)^2-3^2\)
\(=\left(a-b-3\right)\left(a-b+3\right)\)
\(c,6x^3+18x^2y+18xy^2+6y^3\)
\(=6\left(x^3+3x^2y+3xy^2+y^3\right)\)
\(=6\left(x+y\right)^3\)
Còn câu cuối lát mk lm nốt , bh mk bận nha bn .
Bài 1:
a) \(\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow x+2=0\) hoặc \(x+4=0\)
\(\Leftrightarrow x=-2\) hoặc \(x=-4\)
b) \(2x^3+\dfrac{3}{2}x^2=0\)
\(\Leftrightarrow x^2\left(2x+\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow x^2=0\) hoặc \(2x+\dfrac{3}{2}=0\)
\(\Leftrightarrow x=0\) hoặc \(x=-\dfrac{3}{4}\)
bài 1
a) (x+2)2-x2+4=0
\(\Leftrightarrow\)x2+4x+4-x2+4=0
\(\Leftrightarrow\)4x+8=0
\(\Leftrightarrow\) 4(x+2)=0
=>x+2=0
\(\Leftrightarrow\)x=-2
vậy x=-2
b) \(2x^3+\dfrac{3}{2}x^2=0\)
\(\Leftrightarrow x^2\left(2x+\dfrac{3}{2}\right)=0\)
=>\(\left[{}\begin{matrix}x^2=0\\2x+\dfrac{3}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\-\dfrac{3}{4}\end{matrix}\right.\)
vậy x=0 hoặc x=-\(\dfrac{3}{4}\)
Câu 1:
a. \(\frac{1}{4}x^2-64\)
\(=\left(\frac{1}{2}x\right)^2-8^2\)
\(=\left(\frac{1}{2}x+8\right)\left(\frac{1}{2}x-8\right)\)
b. \(\frac{1}{27}+x^3\)
\(=\left(\frac{1}{3}\right)^3+x^3\)
\(=\left(\frac{1}{3}+x\right)\left(\frac{1}{9}-\frac{1}{3}x+x^2\right)\)
c. \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)\)
\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b+3ab^2+b^3\)
\(=6a^2b+2b^3\)
\(=2b\left(3a^2+b^2\right)\)
a, ĐKXĐ : \(x-1\ne0\)
=> \(x\ne1\)
TH1 : \(x-2\ge0\left(x\ge2\right)\)
=> \(\left|x-2\right|=x-2=1\)
=> \(x=3\left(TM\right)\)
- Thay x = 3 vào biểu thức P ta được :
\(P=\frac{3+2}{3-1}=\frac{5}{2}\)
TH2 : \(x-2< 0\left(x< 2\right)\)
=> \(\left|x-2\right|=2-x=1\)
=> \(x=1\left(KTM\right)\)
Vậy giá trị của P là \(\frac{5}{2}\) .
a) \(P=\frac{x+2}{x-1}\) \(\left(ĐKXĐ:x\ne1\right)\)
Ta có: \(\left|x-2\right|=1\text{⇔}\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) (loại x = 1 vì x ≠ 1)
Thay \(x=3\) vào P, ta có:
\(P=\frac{3+2}{3-2}=\frac{5}{1}=5\)
Vậy P = 5 tại x = 3.
b) \(Q=\frac{x-1}{x}+\frac{2x+1}{x^2+x}=\frac{x-1}{x}+\frac{2x+1}{x\left(x+1\right)}=\frac{x^2-1}{x\left(x+1\right)}+\frac{2x+1}{x\left(x+1\right)}\) (ĐKXĐ: x ≠ 0, x ≠ -1)
\(=\frac{x^2+2x}{x\left(x+1\right)}=\frac{x\left(x+2\right)}{x\left(x+1\right)}=\frac{x+2}{x+1}\)
Trả lời:
a, \(-xy.\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+3xy\)
b, \(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y\)
\(=12x^6y^5:6x^2y^2-3x^3y^4:6x^2y+4x^2y+6x^2y\)
\(=2x^4y^3-\frac{1}{2}xy^3+\frac{2}{3}\)
a.\(\left(-xy\right)\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+6xy\)
b.\(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y=2x^4y^4-\frac{1}{2}xy^3+\frac{2}{3}\)
Giúp bạn câu 1 thôi (Mình lười lắm)
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
Chúc bn học tốt!!
Bài 1 :
ĐKXĐ : \(2-x\ne0\)
=> \(x\ne2\)
Ta có :\(\frac{4x+1}{4\left(2-x\right)}\ge x+2\)
=> \(4x+1\ge4\left(x+2\right)\left(2-x\right)\)
=> \(4x+1\ge4\left(4-x^2\right)\)
=> \(4x+1\ge16-4x^2\)
=> \(4x^2+4x-15\ge0\)
=> \(4x^2+10x-6x-15\ge0\)
=> \(4x\left(x-1,5\right)+10\left(x-1,5\right)\ge0\)
=> \(\left(4x+10\right)\left(x-1,5\right)\ge0\)
=> \(\left[{}\begin{matrix}4x+10\ge0\\x-1,5\ge0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x\ge-\frac{5}{2}\\x\ge\frac{3}{2}\end{matrix}\right.\)
=> \(x\ge\frac{3}{2}\)
Vậy tập nghiệm của bất phương trình trên là \(S=\left\{x|x\ge\frac{3}{2}\right\}\) .
Bài 2:
Ta có: \(\left(a+b\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a^4+b^4\right)-\left(a^2+b^2\right)\left(a^3+b^3\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^4+b^4\right)-\left(a^2+b^3\right)\left(a+b\right)\left(a^2-ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left[a^4+b^4-\left(a^2+b^2\right)\left(a^2-ab+b^2\right)\right]\ge0\)
\(\Leftrightarrow\left(a+b\right)\left[a^4+b^4-a^4+a^3b-a^2b^2-a^2b^2+ab^3-b^4\right]\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^3b+ab^3-a^2b^2\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)ab\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)ab\left(a-b\right)^2\ge0\)
BĐT luôn đúng vì \(a>0;b>0\) và \(\left(a-b\right)^2\ge0\forall a,b\)
Vậy ta có điều phải chứng minh.
Cũng chẳng biết có đánh lộn chỗ nào không nữa. Lần sau chia nhỏ ra.
Thực hiện phép nhân đa thức với đa thức ở vế trái
a) VT = 3 u 2 + 9u + 27 – ( u 3 – 32 u 2 + 9u) = 27 – u 3 = VP (đpcm).
b) VT = ( t 2 – 4)( t 2 + 4) = t 4 – 16 = VP. (đpcm).