\(⋮\)(n-1)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

Giả sử phân số \(\frac{5n+1}{6n-1}\) chưa tối giản

Khi đó ( 5n + 1;6n - 1 ) = d > 1

=> 5n + 1 = dq và 6n - 1 = dp

Từ 5n + 1 = dq => 30n + 6 = 6dq (1)

     6n - 1 = dp => 30n - 5 = 5dp (2)

Từ (1) và (2) => 6dq - 5dp = 1

Do đó : d(6q - 5p) = 1 và d chia hết cho 1. Vô lí vì trái với giả sử d > 1

Vậy \(\frac{5n+1}{6n-1}\)là phân số tối giản

30 tháng 1 2016

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

23 tháng 12 2015

Goi UCLN(4n+3;5n+2)la d

=>4n+3 chia het cho d=>5(4n+3)chia het cho d=20n+15 chia het cho d

5n+2 chia het cho d=>4(5n+2) chia het cho d=20n+8 chia het cho d

=>(20n+15)-(20n+8) chia hết cho d

=>7 chia het cho d

 => d là ước của 7 (-7;-1;1;70

tick nha

 

23 tháng 12 2015

CHTT

30 tháng 11 2018

ab = ab

ba = ba

30 tháng 11 2018

* * *

câu a hình như thiếu đề

b) ab+ba

= 10a+b+10b+a

= 11a + 11b (Phần sau tự c/m vì nó dễ)

c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận

* * *

a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )

Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)

= a+a+1+a+2+a+3+a+4

= 5a +( 1+2+3+4)

= 5a + 10 (Phần sau tự c/m)

b)tương tự câu a, nhưng kết quả cuối  = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)

Hok tốt!!!! ^_^

25 tháng 12 2015

Vì 5n+1 chia hết cho 7 nên 5n+1 thuộc bội của 7.

Ta có: B(7)={0;7;14;21;...}

Mà 5n lại chia hết cho 5 nên 5n+1=21 (Có thể còn có thêm một số số khác nhưng vì đề bài ko nêu rõ phải tìm bao nhiêu n nên mình chỉ lấy 21 là số nhỏ nhất phù hợp với phần trên)

=>5n=21-1

=>5n=20

=>n=20:5

=>n=4

Vậy n=4

15 tháng 3 2019

để 10n/5n-3 là số nguyên(n thuộc Z) suy ra 10n chia hết cho 5n-3

suy ra 5n-3 chia hết cho 5n-3 suy ra 2(5n-3) hay10n-6 chia hết cho 5n-3

suy ra 10n-(10n-6) chia hết cho 5n-3

 suy ra 6 chia hết cho 5n-3

suy ra 5n-3 thuộc ư(6)={2;-3}

           5n thuộc {5;0}

           n thuộc {1;0}     

           

15 tháng 3 2019

Ta có 1/101+1/102+...+1/200>1/200+1/200+...+1/200(có 100 phân số 1/200)=1/2

suy ra

  1/2<D

Ta có 1/101+1/102+...+1/200<1/100+1/100+...+1/100(100 phân số 1/100)=1

Vậy 1/2<D<1(thỏa mãn điều kiện chứng minh)

23 tháng 12 2015

 

\(A=\left(a+a^2\right)+\left(a^3+a^4\right)+....+\left(a^{2n-1}+a^{2n}\right)=a\left(1+a\right)+a^3\left(1+a\right)+...+a^{2n-1}\left(1+a\right)\)

\(=\left(a+1\right)\left(a+a^3+....+a^{2n-1}\right)\)

=> A chia hết cho a +1  với mọi n thuộc N

11 tháng 10 2018

+) chia hết cho 2:

Nếu n = 2k+1 thì n+1 \(⋮\)2

Nếu n = 2k thì n+4 \(⋮\)2

+) chia hết cho 3:

nếu n = 3k thì n + 3 \(⋮\)3

nếu n = 3k +1 thì n +5 = 3k +6 \(⋮\)3

nếu n  = 3k +2 thì n+1 = \(3k+3⋮3\)

Vậy tích trên luôn chia hết cho 2 và 3

18 tháng 4 2020

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

có \(\frac{1}{2\cdot3}< \frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot4}< \frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot5}< \frac{1}{4^2}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{9\cdot10}< \frac{1}{9^2}< \frac{1}{8\cdot9}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}>A>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}>A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow1-\frac{1}{9}>A>\frac{1}{2}-\frac{1}{10}\)

\(\Rightarrow\frac{8}{9}>A>\frac{2}{5}\)

20 tháng 4 2020

Bạn ơi, sai rồi, mình k nhầm
làm sao mà \(\frac{1}{2^2}< \frac{1}{1.2}\)được